TD-VAR 0000000

Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nailing Down Volatile Temperatures Examining their Effects on Asset Prices

L. Bortolan¹ A. Dey² L. Taschini ^{3,4}

¹University of Bologna

²University of Edinburgh Business School

³Grantham Research Institute

⁴ESRC Centre for Climate Change Economics and Policy *London School of Economics*

Climate Econometrics Virtual Seminar - 15 February, 2022

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
•0000	0000000	00000	000000	0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Global supply chains face months of disruption from Texas storm

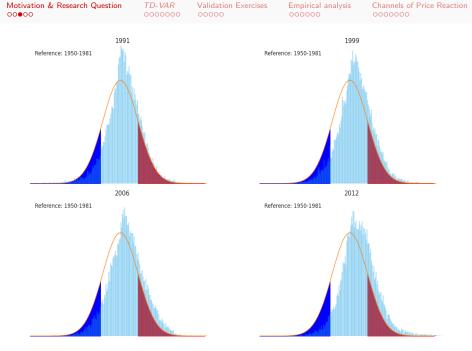

Manufacturers hit by shortages as petrochemicals plants remain below capacity

Figure: Financial Times, March 24th, 2021

Northwest Heat Wave Triggers Blackouts as New York Will Sizzle

- Avista instituted rolling power outages on Monday and Tuesday
- East coast cities now face their own heat wave beginning today

Figure: Bloomberg, June 29th, 2021

) Q (

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

Motivation: Temperature anomalies

Analysis of temperature anomalies on firm performance

- Extreme temperatures affects firms earning (Addoum et al., 2020).
- Stock return sensitivity to abnormal temperature (Kumar et al., 2019).
- Network contagion effect from temperature extreme (Pankratz and Schiller, 2021).

Emerging literature relates variability in temperature anomalies to economic aggregate and corporate performance

- Agriculture: crop-yields (Wheeler et al. (2000), Celgar et al. (2016))
- Human health and mortality (Zanobetti et al (2012))
- Economic growth (Donadelli et al (2017), Kotz et al (2021))
- Asset prices (Makridis and Schloetzer (2021))

TD-VAR 0000000

Validation Exercises

Empirical analysis

Channels of Price Reaction

Motivation: Temperature anomalies

Analysis of temperature anomalies on firm performance

- Extreme temperatures affects firms earning (Addoum et al., 2020).
- Stock return sensitivity to abnormal temperature (Kumar et al., 2019).
- Network contagion effect from temperature extreme (Pankratz and Schiller, 2021).

Emerging literature relates variability in temperature anomalies to economic aggregate and corporate performance

- Agriculture: crop-yields (Wheeler et al. (2000), Celgar et al. (2016))
- Human health and mortality (Zanobetti et al (2012))
- Economic growth (Donadelli et al (2017), Kotz et al (2021))
- Asset prices (Makridis and Schloetzer (2021))

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Research Questions

- How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?
- Is the statistic material to energy and weather markets over and above temperature anomalies?
- Does differential exposure to changing temperature anomalies affect stock prices?
- Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Research Questions

- How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?
- Is the statistic material to energy and weather markets over and above temperature anomalies?
- Does differential exposure to changing temperature anomalies affect stock prices?
- Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Research Questions

- How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?
- Is the statistic material to energy and weather markets over and above temperature anomalies?
- Does differential exposure to changing temperature anomalies affect stock prices?
- Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

Research Questions

- How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?
- Is the statistic material to energy and weather markets over and above temperature anomalies?
- Does differential exposure to changing temperature anomalies affect stock prices?
- Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

Research Questions

- How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?
- Is the statistic material to energy and weather markets over and above temperature anomalies?
- Does differential exposure to changing temperature anomalies affect stock prices?
- Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
00000	•000000	00000	000000	000000

TD-VAR

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?

• Kotz et al., 2021: Day-to-day Temperature Variability

$$\widetilde{T}_{r,y} = \frac{1}{12} \sum_{m} \frac{1}{\sum_{x} w_{r,x}} \sum_{x} w_{r,x} \sqrt{\frac{1}{D_{m,y}}} \sum_{d} (T_{x,d,y} - \overline{T}_{x,d,y})^2$$
(1)

• Donadelli et al., 2019: Temperature Volatility Shocks

$$TVOL = |\sigma_y - \overline{\sigma}_h| \tag{2}$$

(日) (四) (日) (日) (日)

How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?

• Kotz et al., 2021: Day-to-day Temperature Variability

$$\widetilde{T}_{r,y} = \frac{1}{12} \sum_{m} \frac{1}{\sum_{x} w_{r,x}} \sum_{x} w_{r,x} \sqrt{\frac{1}{D_{m,y}} \sum_{d} (T_{x,d,y} - \overline{T}_{x,d,y})^2}$$
(1)

Donadelli et al., 2019: Temperature Volatility Shocks

$$TVOL = |\sigma_y - \overline{\sigma}_h| \tag{2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation & Research Question TD-VAR 00000 Validation Exercises Empirical analysis Channels of Price Reaction 000000 Channels of Price Reaction 000000 Channels of Price Reaction

How to generally represent the changes in the distribution of temperature anomalies spatio-temporally?

• Kotz et al., 2021: Day-to-day Temperature Variability

$$\widetilde{T}_{r,y} = \frac{1}{12} \sum_{m} \frac{1}{\sum_{x} w_{r,x}} \sum_{x} w_{r,x} \sqrt{\frac{1}{D_{m,y}} \sum_{d} (T_{x,d,y} - \overline{T}_{x,d,y})^2}$$
(1)

• Donadelli et al., 2019: Temperature Volatility Shocks

$$TVOL = |\sigma_y - \overline{\sigma}_h| \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TD-VAR Definition

For a location *s*, we define the daily temperature anomaly is:

$$TD_{s,d} = (T_{s,d} - \overline{T}_{s,d}), \tag{3}$$

the monthly *m* average temperature anomaly is:

$$\widetilde{TD}_{s,m} = \frac{1}{D_m} \sum_{d=1}^{D_m} TD_{s,d},$$
(4)

while the variability of temperature anomaly:

$$\sigma(TD_{s,m}) = \frac{1}{D_m} \sqrt{\sum_{d=1}^{D_m} TD_{s,d}^2}.$$
(5)

and the monthly deviation of temperature variability $TD-VAR_{s,m} = \sigma(TD_{s,m}) - \overline{\sigma}(TD_{s,m}),$ (6)

TD-VAR Definition

For a location *s*, we define the daily temperature anomaly is:

$$TD_{s,d} = (T_{s,d} - \overline{T}_{s,d}), \tag{3}$$

the monthly *m* average temperature anomaly is:

$$\widetilde{TD}_{s,m} = \frac{1}{D_m} \sum_{d=1}^{D_m} TD_{s,d},$$
(4)

while the variability of temperature anomaly:

$$\sigma(TD_{s,m}) = \frac{1}{D_m} \sqrt{\sum_{d=1}^{D_m} TD_{s,d}^2}.$$
 (5)

and the monthly deviation of temperature variability TD- $VAR_{s,m} = \sigma(TD_{s,m}) - \overline{\sigma}(TD_{s,m}),$

TD-VAR Definition

For a location *s*, we define the daily temperature anomaly is:

$$TD_{s,d} = (T_{s,d} - \overline{T}_{s,d}), \tag{3}$$

the monthly *m* average temperature anomaly is:

$$\widetilde{TD}_{s,m} = \frac{1}{D_m} \sum_{d=1}^{D_m} TD_{s,d},$$
(4)

while the variability of temperature anomaly:

$$\sigma(TD_{s,m}) = \frac{1}{D_m} \sqrt{\sum_{d=1}^{D_m} TD_{s,d}^2}.$$
(5)

・ロット (雪) ・ (日) ・ (日) ・ (日)

and the monthly deviation of temperature variability

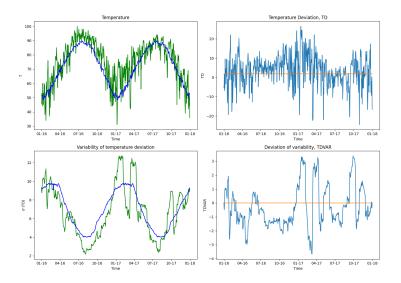
TD-VAR Definition

For a location *s*, we define the daily temperature anomaly is:

$$TD_{s,d} = (T_{s,d} - \overline{T}_{s,d}), \tag{3}$$

the monthly *m* average temperature anomaly is:

$$\widetilde{TD}_{s,m} = \frac{1}{D_m} \sum_{d=1}^{D_m} TD_{s,d},$$
(4)


while the variability of temperature anomaly:

$$\sigma(TD_{s,m}) = \frac{1}{D_m} \sqrt{\sum_{d=1}^{D_m} TD_{s,d}^2}.$$
(5)

and the monthly deviation of temperature variability

$$TD-VAR_{s,m} = \sigma(TD_{s,m}) - \overline{\sigma}(TD_{s,m}), \qquad (6)$$

Motivation: stylized temperature characteristics

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の Q ()

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intuition behind TD-VAR

- Thresholds are commonly used to represent the occurrence of extreme temperatures when using \widetilde{TD} .
- However, positive values of *TD* do not necessarily imply an increase in the occurrence of extremes.
- Changes to *TD-VAR* characterize shifts in the entire distribution of temperature anomalies.
- Theoretically, the probability of experiencing extremes is computed through the equation:

$$X_{TD} = \int_{k_{max}}^{\infty} \psi(x) dx + \int_{-\infty}^{k_{min}} \psi(x) dx.$$
 (7)

TD-VAR 0000●00 Validation Exercises

Empirical analysis

Channels of Price Reaction

Intuition behind TD-VAR

- Thresholds are commonly used to represent the occurrence of extreme temperatures when using \widetilde{TD} .
- However, positive values of \widetilde{TD} do not necessarily imply an increase in the occurrence of extremes.
- Changes to *TD-VAR* characterize shifts in the entire distribution of temperature anomalies.
- Theoretically, the probability of experiencing extremes is computed through the equation:

$$X_{TD} = \int_{k_{max}}^{\infty} \psi(x) dx + \int_{-\infty}^{k_{min}} \psi(x) dx.$$
 (7)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TD-VAR 0000●00 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intuition behind TD-VAR

- Thresholds are commonly used to represent the occurrence of extreme temperatures when using \widetilde{TD} .
- However, positive values of \widetilde{TD} do not necessarily imply an increase in the occurrence of extremes.
- Changes to *TD-VAR* characterize shifts in the entire distribution of temperature anomalies.
- Theoretically, the probability of experiencing extremes is computed through the equation:

$$X_{TD} = \int_{k_{max}}^{\infty} \psi(x) dx + \int_{-\infty}^{k_{min}} \psi(x) dx.$$
 (7)

TD-VAR 0000●00 Validation Exercises

Empirical analysis

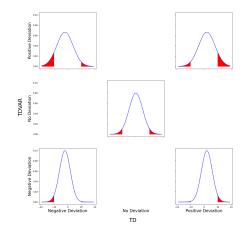
Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intuition behind TD-VAR

- Thresholds are commonly used to represent the occurrence of extreme temperatures when using \widetilde{TD} .
- However, positive values of \widetilde{TD} do not necessarily imply an increase in the occurrence of extremes.
- Changes to *TD-VAR* characterize shifts in the entire distribution of temperature anomalies.
- Theoretically, the probability of experiencing extremes is computed through the equation:

$$X_{TD} = \int_{k_{max}}^{\infty} \psi(x) dx + \int_{-\infty}^{k_{min}} \psi(x) dx.$$
 (7)


TD-VAR 00000●0 Validation Exercises

Empirical analysis

Channels of Price Reaction

TD TD-VAR and extremes

Figure: Effects on extreme, increase in TD and TDVAR

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis
 Channels of Price Reaction

 00000
 000000
 000000
 000000
 000000
 0000000

Geographical aggregation

As we deal with geospatial data, we use two datasets:

- City Level Data: NOAA Global Historical Climatology Network daily (GHNCd).
- State Level: BEST database, spatially homogeneous. We derive state *TD-VAR* by:

$$T_{s,d} = \sum_{i=1}^{N_s} w_i * T_{i,d}$$
 (8)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

with $w_i = 1/N_s$

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
00000	0000000	00000	000000	000000

Validation Exercises

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Electricity demand 1/2

Are changes in TD - VAR material to energy and weather markets over and above \widetilde{TD} ?

- Weather conditions are drivers of energy consumption (Quayle and Diaz, 1980, Chang et al., 2016).
- We employ monthly data from EIA to match state temperature statistics.
- We forecast future energy demand employing ARMA (J, P) model:

$$Q_{s,t} = \sum_{j=1}^{J} a_j Q_{t-j} + \sum_{p=1}^{P} b_p \epsilon_{t-p} + \epsilon_{s,t}$$
(9)

$$\epsilon_{s,t} = \beta_1 * TD - VAR_{s,t} + \beta_2 * \widetilde{TD}_{s,t} + \gamma_t + \eta_n + \epsilon.$$
(10)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Electricity demand 1/2

Are changes in TD - VAR material to energy and weather markets over and above \widetilde{TD} ?

- Weather conditions are drivers of energy consumption (Quayle and Diaz, 1980, Chang et al., 2016).
- We employ monthly data from EIA to match state temperature statistics.
- We forecast future energy demand employing ARMA (J, P) model:

$$Q_{s,t} = \sum_{j=1}^{J} a_j Q_{t-j} + \sum_{p=1}^{P} b_p \epsilon_{t-p} + \epsilon_{s,t}$$
(9)

$$\epsilon_{s,t} = \beta_1 * TD - VAR_{s,t} + \beta_2 * \widetilde{TD}_{s,t} + \gamma_t + \eta_n + \epsilon.$$
(10)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Electricity demand 1/2

Are changes in TD - VAR material to energy and weather markets over and above \widetilde{TD} ?

- Weather conditions are drivers of energy consumption (Quayle and Diaz, 1980, Chang et al., 2016).
- We employ monthly data from EIA to match state temperature statistics.
- We forecast future energy demand employing ARMA (J, P) model:

$$Q_{s,t} = \sum_{j=1}^{J} a_j Q_{t-j} + \sum_{p=1}^{P} b_p \epsilon_{t-p} + \epsilon_{s,t}$$
(9)

$$\epsilon_{s,t} = \beta_1 * TD - VAR_{s,t} + \beta_2 * \widetilde{TD}_{s,t} + \gamma_t + \eta_n + \epsilon.$$
(10)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Electricity demand 1/2

Are changes in TD - VAR material to energy and weather markets over and above \widetilde{TD} ?

- Weather conditions are drivers of energy consumption (Quayle and Diaz, 1980, Chang et al., 2016).
- We employ monthly data from EIA to match state temperature statistics.
- We forecast future energy demand employing ARMA (J, P) model:

$$Q_{s,t} = \sum_{j=1}^{J} a_j Q_{t-j} + \sum_{p=1}^{P} b_p \epsilon_{t-p} + \epsilon_{s,t}$$
(9)

$$\epsilon_{s,t} = \beta_1 * TD - VAR_{s,t} + \beta_2 * \widetilde{TD}_{s,t} + \gamma_t + \eta_n + \epsilon.$$
(10)

Validation Exercises

Empirical analysis

Channels of Price Reaction

Electricity demand 2/2

Table: Estimation Results for energy consumption

	Residential	Commercial	Industrial	Total
TD-VAR	0.0054***	0.0006	0.0020**	0.0025***
	(0.0011)	(0.0006)	(0.0009)	(0.0005)
TD	-0.0011	0.0013**	0.0004	0.0002
	(0.0008)	(0.0006)	(0.0004)	(0.0006)
Firm fixed effects	Yes	Yes	Yes	Yes
Year fixed effects	Yes	Yes	Yes	Yes
No. Observations	9000	9000	9000	9000
Cov. Est.	Clustered	Clustered	Clustered	Clustered
R-squared	0.0038	0.0034	0.0010	0.0027

Standard errors reported in parentheses

Weather derivatives 1/2

 Weather derivatives allows for the hedging of volumetric risk, e.g. declining sales in the energy and power sector due to weather.

$$CDD_{i,m} = \sum_{d=1}^{D_m} (T_d - T_0, 0)^+ \qquad HDD_{i,m} = \sum_{d=1}^{D_m} (T_0 - T_d, 0)^+$$

where T_0 is set at 65F for futures traded at CME.

• We check the association of monthly levels of CDD and HDD to temperature statistics:

 $CDD_{s,m} = \beta_t T_m + \beta_e \widetilde{TD} + \beta_v TD - VAR + \beta_v \sigma(TD) + \epsilon$ $HDD_{s,m} = \alpha + \beta_t T_m + \beta_e \widetilde{TD} + \beta_v TD - VAR + \beta_v \sigma(TD) + \epsilon$ (11)

Weather derivatives 1/2

• Weather derivatives allows for the hedging of volumetric risk, e.g. declining sales in the energy and power sector due to weather.

$$CDD_{i,m} = \sum_{d=1}^{D_m} (T_d - T_0, 0)^+ \qquad HDD_{i,m} = \sum_{d=1}^{D_m} (T_0 - T_d, 0)^+$$

where T_0 is set at 65F for futures traded at CME.

• We check the association of monthly levels of CDD and HDD to temperature statistics:

$$CDD_{s,m} = \beta_t T_m + \beta_e \widetilde{TD} + \beta_v TD - VAR + \beta_v \sigma(TD) + \epsilon$$
$$HDD_{s,m} = \alpha + \beta_t T_m + \beta_e \widetilde{TD} + \beta_v TD - VAR + \beta_v \sigma(TD) + \epsilon$$
(11)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

Weather derivatives 2/2

Table: Estimation of Weather Derivates price driver

	CDD		HDD	
	(1)	(2)	(1)	(2)
T _m	22.262***	25.516***	-25.980***	-26.018***
	(1.7786)	(2.1067)	(0.8380)	(0.9349)
TD-VAR		4.0458**		3.5812***
		(1.9917)		(0.8282)
TD		-11.082***		5.4309***
		(1.6592)		(0.6308)
$\sigma(TD)$		2.0248		19.595**
		(6.0450)		(9.2184)
lpha			326.87***	140.60*
			(11.508)	(79.420)
Estimator	PanelOLS	PanelOLS	PanelOLS	PanelOLS
No. Observations	438	438	542	542
Cov. Est.	Clustered	Clustered	Clustered	Clustered
R-squared	0.8807	0.9188	0.9501	0.9630

Standard errors reported in parentheses

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
00000	0000000	00000	00000	0000000

Empirical analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

T*D-VAR* 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Firm Specific Temperature Exposure

Does differential exposure to changing temperature anomalies affect stock prices?

- We use the Russel 3000 index, 99.8% market cap for firms located in U.S.
- *TD-VAR* for firm *i* is chosen considering headquarter state.
- Specifically, we estimate the following model

$$r_{i,t,s} = \alpha + \beta_T * T_{t,s} + \beta_1 C_{i,t-1} + \phi_t + \eta_i + \epsilon_{i,t}$$
(12)

Motivation & Research QuestionTD-VAR
00000Validation ExercisesEmpirical analysis
00000Channels of Price Reaction
000000

Firm Specific Temperature Exposure

Does differential exposure to changing temperature anomalies affect stock prices?

- We use the Russel 3000 index, 99.8% market cap for firms located in U.S.
- *TD-VAR* for firm *i* is chosen considering headquarter state.
- Specifically, we estimate the following model

$$r_{i,t,s} = \alpha + \beta_T * T_{t,s} + \beta_1 C_{i,t-1} + \phi_t + \eta_i + \epsilon_{i,t}$$
(12)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis
 Channels of Price Reaction

 00000
 00000
 00000
 00000
 000000
 000000

Firm Specific Temperature Exposure

Does differential exposure to changing temperature anomalies affect stock prices?

- We use the Russel 3000 index, 99.8% market cap for firms located in U.S.
- *TD-VAR* for firm *i* is chosen considering headquarter state.
- Specifically, we estimate the following model

 $r_{i,t,s} = \alpha + \beta_T * T_{t,s} + \beta_1 C_{i,t-1} + \phi_t + \eta_i + \epsilon_{i,t}$ (12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis
 Channels of Price Reaction

 00000
 00000
 00000
 00000
 00000
 00000

Firm Specific Temperature Exposure

Does differential exposure to changing temperature anomalies affect stock prices?

- We use the Russel 3000 index, 99.8% market cap for firms located in U.S.
- *TD-VAR* for firm *i* is chosen considering headquarter state.
- Specifically, we estimate the following model

$$r_{i,t,s} = \alpha + \beta_T * T_{t,s} + \beta_1 C_{i,t-1} + \phi_t + \eta_i + \epsilon_{i,t}$$
(12)

1*D-VAR* 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Firm Specific - Results

Table: Estimation for TD(A) and TD-VAR(B) on stock return

Dep. Variable: r	All	Ind	Energy	Health	IT	Utilities	Staple	C. Disc	Mat	Fin	Comm
~											
TD	0.0197	0.0510	0.1452	0.0852	-0.0076	-0.1004**	-0.0036	-0.0268	-0.0780	0.0119	-0.0101
	(0.9529)	(1.1508)	(0.9032)	(0.8592)	(-0.1381)	(-2.5604)	(-0.0500)	(-0.5041)	(-1.0290)	(0.3195)	(-0.1021)
TD-VAR	-0.0984	-0.2476	-0.9477**	0.4770	0.2354	0.3552**	-0.9432***	-0.6084***	0.0163	-0.0670	0.5953
	(0.0759)	(0.1541)	(0.4652)	(0.3478)	(0.2283)	(0.1538)	(0.2646)	(0.2236)	(0.2770)	(0.1357)	(0.4177)
Year fixed effects	Yes	Yes	Yes	Yes	Yes						
Firm fixed effects	Yes	Yes	Yes	Yes	Yes						
No. Observations	141827	26670	6731	17509	18058	6321	7441	18543	8911	22365	5380
Cov. Est.	Clustered	Clustered	Clustered	Clustered	Clustered						
R-squared	0.0220	0.0237	0.0243	0.0139	0.0295	0.0209	0.0295	0.0359	0.0405	0.0279	0.0317

Standard errors reported in parentheses

I D-VAR 0000000

Validation Exercises

Empirical analysis

Channels of Price Reaction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Persistence

Table: Estimation for \widetilde{TD} and TD-VAR, three sector, different periods

		Energy			Staple			Health	
Dep. Variable: r	2006-2010	2011-2015	2016-2020	2006-2010	2011-2015	2016-2020	2006-2010	2011-2015	2016-2020
TD	0.267	0.1491	0.180	-0.324	-0.0739	0.3745	0.4770	0.1546	0.1036
	(0.4652)	(0.5246)	(0.7636)	(0.2646)	(0.2898)	(0.4061)	(0.3478)	(0.3990)	(0.5384)
TD-VAR	-0.4975*	-0.0863	-2.4626***	-1.0146***	-0.9042***	-0.8223***	0.4770	0.3278	0.5901
	(0.3652)	(0.5246)	(0.7636)	(0.2646)	(0.2898)	(0.4061)	(0.3478)	(0.3990)	(0.5384)
Firm fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
No. Observations	6731	5171	3067	7441	5523	3252	17509	13700	9017
Cov. Est.	Clustered	Clustered	Clustered	Clustered	Clustered	Clustered	Clustered	Clustered	Clustered
R-squared	0.0243	0.0386	0.0621	0.0295	0.0260	0.0478	0.0139	0.0127	0.0161

Standard errors reported in parentheses

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis

 00000
 000000
 000000
 000000
 000000
 000000

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We examine whether investors can reduce their exposure to temperature by focusing on local temperature information.
- Sort states into quintiles based on their *TD* and *TD-VAR* exposure.
- Form long-short spread portfolios: going long in the portfolio of less-exposed states and short in the most-exposed states.
- Project the 5 portfolio returns on the Fama-French 3 factors and a fourth momentum factor.
- The α for each portfolio captures whether this is a viable hedging strategy.

Motivation & Research Question T 00000 0

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We examine whether investors can reduce their exposure to temperature by focusing on local temperature information.
- Sort states into quintiles based on their *TD* and *TD-VAR* exposure.
- Form long-short spread portfolios: going long in the portfolio of less-exposed states and short in the most-exposed states.
- Project the 5 portfolio returns on the Fama-French 3 factors and a fourth momentum factor.
- The α for each portfolio captures whether this is a viable hedging strategy.

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We examine whether investors can reduce their exposure to temperature by focusing on local temperature information.
- Sort states into quintiles based on their *TD* and *TD-VAR* exposure.
- Form long-short spread portfolios: going long in the portfolio of less-exposed states and short in the most-exposed states.
- Project the 5 portfolio returns on the Fama-French 3 factors and a fourth momentum factor.
- The α for each portfolio captures whether this is a viable hedging strategy.

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We examine whether investors can reduce their exposure to temperature by focusing on local temperature information.
- Sort states into quintiles based on their *TD* and *TD-VAR* exposure.
- Form long-short spread portfolios: going long in the portfolio of less-exposed states and short in the most-exposed states.
- Project the 5 portfolio returns on the Fama-French 3 factors and a fourth momentum factor.
- The α for each portfolio captures whether this is a viable hedging strategy.

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We examine whether investors can reduce their exposure to temperature by focusing on local temperature information.
- Sort states into quintiles based on their *TD* and *TD-VAR* exposure.
- Form long-short spread portfolios: going long in the portfolio of less-exposed states and short in the most-exposed states.
- Project the 5 portfolio returns on the Fama-French 3 factors and a fourth momentum factor.
- The α for each portfolio captures whether this is a viable hedging strategy.

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis
 Channels of Price Reaction

 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000
 00

Spatial Long-Short Portfolio

Table: Returns to Portfolio Sorted on TD-VAR and \widetilde{TD} , Energy, Utilities, Consumer Staples, Consumer Discretionary

	Panel A	A: TD-VAR	2	Panel B: <i>TD</i>			
	Excess Return	3-factor	4-factor	Excess Return	3-factor	4-factor	
Quintile 1	1.114***	0.435***	0.439***	0.881**	0.213	0.214	
	(3.172)	(2.415)	(2.388)	(2.518)	(1.200)	(1.201)	
Quintiles 2–4	0.7253***	0.162	0.16	0.755***	0.185	0.182	
	(2.833)	(1.473)	(1.446)	(2.888)	(1.611)	(1.586)	
Quintile 5	0.678**	0.055	0.050	0.946**	0.293	0.298	
	(2.191)	(0.333)	(0.308)	(2.782)	(1.569)	(1.601)	
(1-5)	0.436	0.38	0.389	-0.058	-0.08	-0.084	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
00000	0000000	00000	000000	000000

Channels of Price Reaction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Identifying channels of price reaction

Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

- The prior analysis suggests that exposure to *TD-VAR* has serious implications for firm stock prices.
- We don't observe the exact mechanism that dictates financial consequences.
- Two possible vectors at play:
 - Investors belief: heightened temperature variability acts as a "wake-up call".
 - Physical realization on firm's financial performance.

 Motivation & Research Question
 TD-VAR
 Validation Exercises
 Empirical analysis
 Channels of Price Reaction

 00000
 00000
 00000
 00000
 00000
 00000

Identifying channels of price reaction

Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

- The prior analysis suggests that exposure to *TD-VAR* has serious implications for firm stock prices.
- We don't observe the exact mechanism that dictates financial consequences.
- Two possible vectors at play:
 - Investors belief: heightened temperature variability acts as a "wake-up call".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Physical realization on firm's financial performance.

Motivation & Research QuestionTD-VAR
00000Validation Exercises
00000Empirical analysis
00000Channels of Price Reaction
00000OO

Identifying channels of price reaction

Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

- The prior analysis suggests that exposure to *TD-VAR* has serious implications for firm stock prices.
- We don't observe the exact mechanism that dictates financial consequences.
- Two possible vectors at play:
 - Investors belief: heightened temperature variability acts as a "wake-up call".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Physical realization on firm's financial performance.

Motivation & Research QuestionTD-VAR
00000Validation Exercises
00000Empirical analysis
00000Channels of Price Reaction
00000OOOOOO

Identifying channels of price reaction

Are these shocks drivers of investor attention and beliefs or do they cause adverse disruptions to firm operations?

- The prior analysis suggests that exposure to *TD-VAR* has serious implications for firm stock prices.
- We don't observe the exact mechanism that dictates financial consequences.
- Two possible vectors at play:
 - Investors belief: heightened temperature variability acts as a "wake-up call".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Physical realization on firm's financial performance.

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Attention				

- Engle et al., 2020 represent climate uncertainty through WSJ news, U.S. country wide.
- Granular representations of climate attention could capture the geographical heterogeneity of TD-VAR and \widetilde{TD} .
- Obtain Google Search Volume Index (SVI) for "Temperature" and "Climate Change" for each state.
- Following Choi et al., 2020, we regress unexpected state-level SVI for each topic on the temperature statistics.

 $\epsilon_{SVI,s,t} = \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \rho_t + \gamma_s + \epsilon_{s,t}.$ (13)

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Attention				

- Engle et al., 2020 represent climate uncertainty through WSJ news, U.S. country wide.
- Granular representations of climate attention could capture the geographical heterogeneity of TD-VAR and \widetilde{TD} .
- Obtain Google Search Volume Index (SVI) for "Temperature" and "Climate Change" for each state.
- Following Choi et al., 2020, we regress unexpected state-level SVI for each topic on the temperature statistics.

 $\epsilon_{SVI,s,t} = \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \rho_t + \gamma_s + \epsilon_{s,t}.$ (13)

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis 000000	Channels of Price Reaction
Attention				

- Engle et al., 2020 represent climate uncertainty through WSJ news, U.S. country wide.
- Granular representations of climate attention could capture the geographical heterogeneity of TD-VAR and \widetilde{TD} .
- Obtain Google Search Volume Index (SVI) for "Temperature" and "Climate Change" for each state.
- Following Choi et al., 2020, we regress unexpected state-level SVI for each topic on the temperature statistics.

 $\epsilon_{SVI,s,t} = \beta_T * TD - VAR_{s,t} + \beta_D * TD_{s,t} + \rho_t + \gamma_s + \epsilon_{s,t}.$ (13)

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Attention				

- Engle et al., 2020 represent climate uncertainty through WSJ news, U.S. country wide.
- Granular representations of climate attention could capture the geographical heterogeneity of TD-VAR and \widetilde{TD} .
- Obtain Google Search Volume Index (SVI) for "Temperature" and "Climate Change" for each state.
- Following Choi et al., 2020, we regress unexpected state-level SVI for each topic on the temperature statistics.

$$\epsilon_{SVI,s,t} = \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \rho_t + \gamma_s + \epsilon_{s,t}.$$
(13)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation & Research Question	TD-VAR	Validation Exercises	Empirical analysis	Channels of Price Reaction
00000	0000000	00000	000000	000000

SVI results

Table: State specific Google SVI AR(1) residual

	Climate	Climate Change: Panel (A)			Temperature: Panel (B)		
	1	2	3	1	2	3	
TD-VAR	0.77***		0.76***	0.73***		0.76***	
	(0.24)		(0.25)	(0.17)		(0.16)	
TD		-0.05	-0.04		0.12**	0.13***	
		(0.05)	(0.05)		(0.05)	(0.05)	
Firm fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	
No. Observations	8850	8850	8850	8850	8850	8850	
Cov. Est	Clustered	Clustered	Clustered	Clustered	Clustered	Clustered	
R-squared	0.01	0.001	0.01	0.02	0.01	0.04	

t-stats reported in parentheses

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − の Q @

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Firm-level impact beyond attention

- We analyze the realized impact of temperature shocks on firm-level operations.
- Sautner et al., 2020 develop a time-varying measure of firm-level exposure to physical climate change risks.
- We disentangle material impact of the temperature shock from the effects of attention:

 $PhysCCExp_{i,t} = \alpha + \beta_1 * WSJt + \beta_2 * \epsilon_{WSJ,t} + \gamma_i + \epsilon_{NetExp,i,t}.$ (14)

$$\epsilon_{NetExp,i,t} = \alpha + \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \gamma_i + \epsilon_{i,s,t}.$$
(15)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Firm-level impact beyond attention

- We analyze the realized impact of temperature shocks on firm-level operations.
- Sautner et al., 2020 develop a time-varying measure of firm-level exposure to physical climate change risks.
- We disentangle material impact of the temperature shock from the effects of attention:

 $PhysCCExp_{i,t} = \alpha + \beta_1 * WSJt + \beta_2 * \epsilon_{WSJ,t} + \gamma_i + \epsilon_{NetExp,i,t}.$ (14)

$$\epsilon_{NetExp,i,t} = \alpha + \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \gamma_i + \epsilon_{i,s,t}.$$
(15)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Firm-level impact beyond attention

- We analyze the realized impact of temperature shocks on firm-level operations.
- Sautner et al., 2020 develop a time-varying measure of firm-level exposure to physical climate change risks.
- We disentangle material impact of the temperature shock from the effects of attention:

 $PhysCCExp_{i,t} = \alpha + \beta_1 * WSJt + \beta_2 * \epsilon_{WSJ,t} + \gamma_i + \epsilon_{NetExp,i,t}.$ (14)

$$\epsilon_{NetExp,i,t} = \alpha + \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \gamma_i + \epsilon_{i,s,t}.$$
(15)

TD-VAR 0000000 Validation Exercises

Empirical analysis

Channels of Price Reaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Firm-level impact beyond attention

- We analyze the realized impact of temperature shocks on firm-level operations.
- Sautner et al., 2020 develop a time-varying measure of firm-level exposure to physical climate change risks.
- We disentangle material impact of the temperature shock from the effects of attention:

 $PhysCCExp_{i,t} = \alpha + \beta_1 * WSJt + \beta_2 * \epsilon_{WSJ,t} + \gamma_i + \epsilon_{NetExp,i,t}.$ (14)

$$\epsilon_{NetExp,i,t} = \alpha + \beta_T * TD - VAR_{s,t} + \beta_D * \widetilde{TD}_{s,t} + \gamma_i + \epsilon_{i,s,t}.$$
(15)

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction

Results

Table: Firm-Level Exposure to Temperature Shocks

	(1)	(2)	(3)	(4)
	All Industires	Ex Util/Energy	Util/Energy	Cons Disc/Staples
TD-VAR	0.038***	0.032**	0.102**	0.020
	(0.014)	(0.015)	(0.050)	(0.019)
ΤĎ	-0.006*	-0.005	-0.014	-0.004
	(0.003)	(0.003)	(0.013)	(0.005)
Firm FE	Yes	Yes	Yes	Yes
Sector FE	Yes	Yes	Yes	Yes
Observations	65341	60589	4752	12046
R-sq	0.000	0.000	0.001	0.000

t-stats reported in parentheses

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Conclusions				

- We analyze a temperature metric, *TD-VAR*, the deviation of the average temperature variability from its historical level.
- We show that *TD-VAR* is a driver for unexpected energy consumption especially for the residential and industrial sectors.
- Traders consider *TD-VAR* in the pricing of weather derivatives.
- In U.S. stock markets, Energy, Utility, and consumer sectors are geographically impacted by *TD-VAR*.
- The pricing effect is due to both investor attention and firm-level repercussions as a result of changes to *TD-VAR* rather than *TD*.

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Conclusions				

- We analyze a temperature metric, *TD-VAR*, the deviation of the average temperature variability from its historical level.
- We show that *TD-VAR* is a driver for unexpected energy consumption especially for the residential and industrial sectors.
- Traders consider *TD-VAR* in the pricing of weather derivatives.
- In U.S. stock markets, Energy, Utility, and consumer sectors are geographically impacted by *TD-VAR*.
- The pricing effect is due to both investor attention and firm-level repercussions as a result of changes to *TD-VAR* rather than *TD*.

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Conclusions				

- We analyze a temperature metric, *TD-VAR*, the deviation of the average temperature variability from its historical level.
- We show that *TD-VAR* is a driver for unexpected energy consumption especially for the residential and industrial sectors.
- Traders consider *TD-VAR* in the pricing of weather derivatives.
- In U.S. stock markets, Energy, Utility, and consumer sectors are geographically impacted by *TD-VAR*.
- The pricing effect is due to both investor attention and firm-level repercussions as a result of changes to *TD-VAR* rather than *TD*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Conclusions				

- We analyze a temperature metric, *TD-VAR*, the deviation of the average temperature variability from its historical level.
- We show that *TD-VAR* is a driver for unexpected energy consumption especially for the residential and industrial sectors.
- Traders consider *TD-VAR* in the pricing of weather derivatives.
- In U.S. stock markets, Energy, Utility, and consumer sectors are geographically impacted by *TD-VAR*.
- The pricing effect is due to both investor attention and firm-level repercussions as a result of changes to *TD-VAR* rather than *TD*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation & Research Question	<i>TD-VAR</i> 0000000	Validation Exercises	Empirical analysis	Channels of Price Reaction
Conclusions				

- We analyze a temperature metric, *TD-VAR*, the deviation of the average temperature variability from its historical level.
- We show that *TD-VAR* is a driver for unexpected energy consumption especially for the residential and industrial sectors.
- Traders consider *TD-VAR* in the pricing of weather derivatives.
- In U.S. stock markets, Energy, Utility, and consumer sectors are geographically impacted by *TD-VAR*.
- The pricing effect is due to both investor attention and firm-level repercussions as a result of changes to TD-VAR rather than \widetilde{TD} .