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How to effectively reduce emissions to net zero?
Actual policy approach

Policy makers almost exclusively legislate mixes of many
simultaneously applied policy interventions
(Axsen et al. 2020; Eskander and Fankhauser 2020)

▶ Evaluating the causal effect of each individual policy in a
legislative package is challenging if at all possible

▶ Simultaneously applied policies are a threat to identification
▶ Urgent need for better understanding of interacting policies
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Recent Examples

German Climate Change Policies in 2019 – 2021

includes: new sectoral targets (Climate Change Act), carbon pricing, subsidies,
infrastructure investment, etc.

EU Fit for 55 Commission proposal
includes: CO2 fuel standards, ICE bans (2035), Carbon Pricing (Revised EU
ETS from 2026), public infrastructure investment (electric charging points),
etc.

Which econometric tools are available to estimate the causal
effects of all these different policy options?
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Forward and reverse causal questions
Empirical research mostly concerned with "Forward Causal"
questions: "Did X affect Y"? e.g. Diff-in-Diff
▶ Effect of single, known policy interventions in isolation (e.g.

carbon tax reform in 1991 on emissions)

Here: "Reverse Causal" question: "What affected Y?"
(Gelman and Imbens, 2011, 2013)

▶ ’Searching for new variables that are not yet in the model.’
▶ e.g. what caused emissions to fall since 2005?
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This paper

Viable data-driven approach to identify a-priori unknown
policies or policy mixes that effectively reduce CO2 emissions

Method: Operationalization of reverse-causal modeling within the
domain of break detection in panel setting

1. Agnostically detect structural breaks in emissions relative to a
control group
▶ No a-prior knowledge: Any unit may be treated at any time

with heterogeneous treatment effects
▶ Machine learning to reduce the number of potential treatments
▶ Post-selection model is equivalent to conventional DID

2. Attribution of emission breaks to single policy or policy mix

Application: “What reduced CO2 emissions?” in the EU road
transport sector between 1995 and 2018
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Related literature
Policy evaluation literature

Policy evaluation literature predominantly focuses on forward
causal questions using a range of time-tested, quasi-experimental
tools
▶ DID (e.g. Klemetsen et al. 2020, Colmer et al. 2020); SCM (e.g.

Andersson 2019, Bayer and Aklin 2020)
▶ Issues: (i) focus on tools-of-choice risks missing interventions that are

a-priori unknown or underestimated; (ii) focus on single policies in
isolation risks missing confounding or reinforcing policies

▶ This paper: Search for “causes of effects” to overcome potentially
infeasible effort of answering vast numbers of “effects of causes” questions
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2021), but no focus on treatment evaluation
▶ This paper: Introduces break detection to panel setting with focus on

treatment evaluation using interactions (akin to Wooldridge 2021)



Related literature
Time series literature

Time series literature commonly links structural breaks to
policy
▶ UK climate policy (Castle and Hendry 2021), Paris agreement on stock

returns (Mukanjari and Sterner 2018), many others
▶ Issue: No control groups, does not identify treatment effects if there are

trends
▶ Recent developments using LASSO in panel context (Okui and Wang

2021), but no focus on treatment evaluation
▶ This paper: Introduces break detection to panel setting with focus on

treatment evaluation using interactions (akin to Wooldridge 2021)



Structural Breaks
▶ Unexpected (often rapid) change in the stability of regression

parameters (mean or variance)
▶ Many sudden changes, particularly when unanticipated, cause links

between variables to shift
▶ Often breaks caused by events outside the analysis at hand (e.g.,

policy implementation, tipping points, wars, innovation)
▶ In time series dealt with by adjusting the intercept (e.g.

Step-Indicator Saturation)

From Castle and Hendry, 2020
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effects estimator (TWFE):

yi ,t = αi +φt + τ ×Di ,t + εi ,t

▶ Note: binary treatment variables Di ,t – denoting interactions
of indicators treati for treated & postt for post-treatment –
are equivalent to breaks in the intercept of treated units

E [yi ,t | treati = 1] = αi + τ ×1t≥post +φt
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αi for t < post

αi + τ for t ≥ post

▶ Step-shift τ in the treated units’ intercepts when switching
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Method: Unknown timing & assignment
General idea

▶ Equivalence between step-shifts in the unit-specific intercept
(i.e. group fixed effect) and known treatment specification
(e.g. when using DiD) suggests alternative approach to
evaluate reverse causal questions

▶ Rather than exclusively evaluating known interventions, we
estimate a TWFE estimator in search of potential structural
breaks (step-shifts) in the unit-specific intercepts

▶ Once a break has been identified, it can be interpreted as a
treatment for the relevant unit
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Method: Unknown timing & assignment
Step 1: Saturate a TWFE model with a full set of step-shifts

Step-shifts for every i and t:

yi ,t =αi+φt+
N

∑
j=1

T

∑
s=2

τj ,s1{i=j ,t≥s}+εi ,t

▶ Operationalizes the notion of
Gelman and Imbens (2013)
that reverse causal questions
require “searching for new
variables that are not yet in
the model”

▶ Nests "known treatments"
as a special cases
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Method: Unknown timing & assignment
Step 2: Apply variable selection methods from machine learning

ML selection algorithm to move
from general model that embeds
all possible breaks to a sparse
model w/ only relevant breaks

yi ,t =αi+φt+ ∑
j∈T̂r

∑
s∈T̂j

τ̂j ,s1{i=j ,t≥s}+εi ,t

▶ where T̂r denotes set of detected

treated units w/ treatment times T̂j

Here: "gets" algorithm
▶ Targets false positive rate γc

P
(
i ∈ T̂r |treati = 0

)
= 1− (1− γc )

T

alternative machine learning algorithms



Method: Unknown timing & assignment
Step 3: Estimate post-selection model

▶ Identifies (possibly multiple)
unit-specific treatment
effects τi (averaged over
time) conditional on
treatment effects being
non-zero

▶ Conditional on having
detected treatment, resulting
model is identical to
imposing known intervention
in TWFE with interactions



Method: Unknown timing & assignment
Step 4: Attribute detected treatment effects to policy interventions

▶ Confidence interval for the timing of each detected step-shift
T̂j to accommodate for timing uncertainty

▶ Resort to well-established policy databases to find policy
measures implemented in the years in the confidence intervals
▶ IEA’s Policies and Measures Database
▶ Climate Change Laws of the World
▶ National Communications to the UNFCCC
▶ ...



Method: More formal discussion

Discussion of this method, its properties and simulation results can
be found in our newest Working Paper (Pretis and Schwarz,
Working Paper)

Implementation of this using the gets R-package as well as it’s
extension getspanel.



Application: EU transport emissions

▶ Identical technological standards at EU level but largely
varying national policy measures across Member States →
Unable to consider fuel standards, as set on the EU level
i.e. no variation across units.



Application: EU transport emissions
Data

▶ Emissions data from Emissions Database for Global
Atmospheric Research (EDGAR)

▶ Samples include EU-15 and EU-31 (incl. UK, Norway,
Switzerland, Iceland)

▶ 1995 – 2018



Application: EU transport emissions
Data

Further Time Series Plots



Application: EU transport emissions
Model

Saturated starting model

controlling for xi ,t =

 log(GPD)
log(GDP)2

log(population)


For EU-15 sample:

log(CO2)i ,t = αi +φt +
N=15

∑
j=1

T=24

∑
s=2

τj ,s1{i=j ,t≥s}+ x ′i ,tβ + εi ,t

Model selection over N(T −1) = 345 potential break variables



Results: Break detection
using “gets” with false-positive rate targets of 5%, 1%, or 0.1%

results table



Results: Treatment effects
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Results: Categorization of effective policies



"I don’t buy it"

We repeatedly find that carbon and fuel taxes matter. But can we
back this up with the data? (Data from Dolphin et al. (2020))



"I don’t buy it"
We repeatedly find that carbon and fuel taxes matter. But can we
back this up with the data? (Data from Dolphin et al. (2020))

Our model finds carbon pricing changes, even though we did not
feed it any information on it.



Results: Summary I

Detect 10 ’large’ interventions with -8% to -20% reductions in CO2
road emissions across 7 countries.

1. Treated (detected): 7
2. Control: 5 (EU15) or 24 (EU31)
3. Largest effects (Finland 2000, Germany 2002/03, Luxembourg

2015, Ireland 2015) linked to increases of existing but
moderate carbon or fuel taxes.

4. Emission reductions linked to price interventions increasing
cost of driving
▶ Link 6 cases to carbon taxes and 2 cases each to fuel taxes and

road tolls
▶ Link 7 of the 10 unique breaks to policy mixes combining taxes

with subsidies

Suggests that commitment to staggered, anticipated, and
permanent tax increases over time can be particularly effective
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Results: Summary II

5. Only one detected emission reductions attributable to a single
policy. Investigating a single policy therefore is likely to miss
the effects of supplementary policies.

6. All detected emission reductions attributed to at least one tax
intervention that increases the cost of driving
▶ Indicates that carbon, fuel, or road use taxes are critical

elements of effective policy mixes
7. Majority of emission reductions attributed to policy mixes that

combine aforementioned taxes with vehicle taxes or subsidies
▶ Suggests that policy mixes that simultaneously address the

energy efficiency gap and rebound effects are effective
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Limitations

▶ Set-up does not allow identification of EU wide policies, such
as Fuel Efficiency Standards. But same problem with DiD
(Forward Causal)

▶ Appropriate judgement necessary for Attribution
▶ Further covariates enable testing attribution links further
▶ Currently only considering emission reducing breaks - positive

breaks disregarded
▶ Risk to identification: Spillovers across countries (similar to

forward causal studies)
▶ Differentiation between policies and structural breaks due to

e.g. debt crisis not possible



Conclusion

▶ We propose a complementary approach to ex-post policy
evaluation: Instead of estimating the effect of a single, known
cause on emissions, we seek to identify the multiple, known
and unknown causes of an emissions effect

▶ As policy makers implement ever more climate policy mixes to
meet their net-zero targets, we believe our novel approach is
policy relevant because it enables drawing systematic
inference on the effectiveness of such policy mixes

▶ Use case demonstrated for the EU transport sector – the key
bottleneck for climate-neutrality in EU



Outlook

▶ Approach is readily applicable to many other contexts
▶ Both further country and sector (e.g. electricity or agriculture)

applications in the pipeline
▶ More flexibility in the shape of step-indicators e.g., Smooth

Policy Indicators that allow for a policy to phase-in and out
▶ Further robustness checks (e.g. excluding certain countries due

to fuel tourism)



Thank You
Moritz Schwarz

moritz.schwarz@ouce.ox.ac.uk



Appendix



Properties & Nuances
▶ Identify each treated unit with separate interaction – bypasses

weighting problem in DiD (Goodman-Bacon, 2021; Callaway
and Sant’anna 2020, etc.)

▶ Multiple breaks detected: equivalent to staggered treatment
through interactions Wooldridge (2021)

▶ Time-varying Treatment effects
▶ Piece-wise constant through linear combinations of

step-functions.
▶ Fully-time varying treatment effects through interactions

(replace step-functions with impulse indicators)
▶ Detect treatment conditional on treatment effects being

non-zero.
▶ Conditional on having detected treatment, resulting model is

identical to imposing known intervention in TWFE with
interactions

▶ Post-Detection Attribution: comparable to arguing ‘as if
random assignment’ in ‘known’ treatment setting.



Machine learning selection algorithms

Range of machine learning algorithms available
1. Block search algorithm “gets”

(Pretis et al. 2018; Schwarz and Pretis 2021)

▶ Applies a near-exhaustive tree search over candidate variables
▶ Targets false positive rate which converges to the chosen level

of significance of selection γc as n→ ∞

▶ Approximate break date uncertainty

2. Shrinkage-based methods such as the (adaptive) LASSO
(Tibshirani 1996)

▶ Do not target the false positive rate
▶ Simulations suggest less power and less stable false-positive

rate when compared “gets”
back



Machine learning selection algorithms

Simulation Performance (Pretis 2019)

back



Results table

Country Model
1 2 3 4 5 6

EU-15 EU-15 EU-15 EU-31 EU-31 EU-31
significance level for breaks

5% 1% 0.1% 5% 1% 0.1%

Denmark effect −0.080
se (0.020)
year 2012
95% CI ± 6

Finland effect −0.103 −0.123 −0.128 −0.156 −0.171
se (0.020) (0.022) (0.024) (0.024) (0.028)
year 2000 2000 2000 2000 2000
95% CI ± 2 ± 2 ± 2 ± 1 ± 2

Germany effect −0.105 −0.131 −0.108 −0.112 −0.112
se (0.018) (0.020) (0.022) (0.021) (0.025)
year 2002 2002 2002 2003 2003
95% CI ± 2 ± 1 ± 3 ± 3 ± 4

Ireland effect −0.087 −0.127
(1st break) se (0.020) (0.023)

year 2011 2011
95% CI ± 3 ± 2

Ireland effect −0.148 −0.192 −0.247 −0.244 −0.229
(2nd break) se (0.028) (0.028) (0.030) (0.034) (0.037)

year 2015 2015 2015 2015 2015
95% CI ± 1 ± 1 ± 0 ± 1 ± 1

back



Results table

Country Model
1 2 3 4 5 6

EU-15 EU-15 EU-15 EU-31 EU-31 EU-31
significance level for breaks

5% 1% 0.1% 5% 1% 0.1%

Luxembourg effect −0.136 −0.108
(1st break) se (0.024) (0.031)

year 2007 2007
95% CI ± 1 ± 3

Luxembourg effect −0.214 −0.193 −0.227 −0.262
(2nd break) se (0.031) (0.030) (0.035) (0.038)

year 2015 2015 2015 2015
95% CI ± 1 ± 1 ± 1 ± 1

Portugal effect −0.094
se (0.021)
year 2011
95% CI ± 4

Sweden effect −0.095 −0.103 −0.110
(1st break) se (0.017) (0.019) (0.022)

year 2001 2001 2001
95% CI ± 2 ± 2 ± 3

Sweden effect −0.108 −0.115
(2nd break) se (0.019) (0.022)

year 2006 2006
95% CI ± 3 ± 4

back



Emissions data

back



Simulation Performance: 1 Treated, 9 Control
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Application: EU Transport Emissions
Starting Model (treatment at any point in time for each unit):

log(CO2)i ,t = αi +φt +
N

∑
j=1

2018

∑
s=1996

τj ,s1{i=j ,t≥s}+ x ′i ,tβ + εi ,t

Selection (targeting γc = 0.05, =0.01 & =0.001) – yielding Sparse
Model:

̂log(CO2)i ,t = α̂i + φ̂t + ∑
j∈T̂r

∑
s∈T̂j

τ̂j ,s1{i=j ,t≥s}+ x ′i ,t β̂

gets: Expected False Positive – Example: γc = 0.001,T = 24
▶ Expected number of false positive periods for a single country =

0.001× (T −1) = 0.023 < 1
▶ Probability of at least one false-positive treated period (per ctry):

1− (1−0.001)(T−1) = 0.02
▶ Expected number of false-positive treated countries:

▶ EU-15: 0.02×15 = 0.36 < 1
▶ EU-31: 0.02×31 = 0.73 < 1
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