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Ever more commitments to net zero

COP26: India PM Narendra Modi Saudi Arabia commits to net zero
pledges net zero by 2070 emissions by 2060
Climate change: China aims for g o=

‘carbon neutrality by 2060’

By Matt McGrath

Japan aims for zero emissions, carbon neutral
society by 2050 - PM
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Climate change: Australia pledges
net zero emissions by 2050
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“— half by 2030 as part of Parls Ilmate pact
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European Union enshrines net zero and emissions
targets into law

By Angela Dewan, CNN
i Updated 1163 GMT (1953 HKT) June 28, 2021



Transport Mitigation is indispensable for net zero
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Transport Mitigation is indispensable for net zero
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In this paper, we focus on road emissions (cars, vans, trucks,
buses, motorcycles).



How to effectively reduce emissions to net zero?

Range of possible policies

Vehicle purchase/
Carbon & fuel taxes Road tolls registration taxes Subsidies & tax credits
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How to effectively reduce emissions to net zero?
Which policy to choose?

» Many considerations relevant (costs, equity, etc.)

» Crucial in the context of Net-Zero challenge: policy
effectiveness at reducing carbon emissions



How to effectively reduce emissions to net zero?
Which policy to choose?

» Many considerations relevant (costs, equity, etc.)
» Crucial in the context of Net-Zero challenge: policy
effectiveness at reducing carbon emissions

Priority: ldentify which policies have successfully reduced
carbon emissions



How to effectively reduce emissions to net zero?
Actual policy approach

Policy makers almost exclusively legislate mixes of many
simultaneously applied policy interventions
(Axsen et al. 2020; Eskander and Fankhauser 2020)



How to effectively reduce emissions to net zero?
Actual policy approach

Policy makers almost exclusively legislate mixes of many
simultaneously applied policy interventions
(Axsen et al. 2020; Eskander and Fankhauser 2020)

» Evaluating the causal effect of each individual policy in a
legislative package is challenging if at all possible

» Simultaneously applied policies are a threat to identification

» Urgent need for better understanding of interacting policies



Recent Examples

German Climate Change Policies in 2019 — 2021

]
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includes: new sectoral targets (Climate Change Act), carbon pricing, subsidies,
infrastructure investment, etc.

EU Fit for 55 Commission proposal

includes: CO; fuel standards, ICE bans (2035), Carbon Pricing (Revised EU
ETS from 2026), public infrastructure investment (electric charging points),
etc.



Recent Examples

German Climate Change Policies in 2019 — 2021
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includes: new sectoral targets (Climate Change Act), carbon pricing, subsidies,
infrastructure investment, etc.

EU Fit for 55 Commission proposal

includes: CO; fuel standards, ICE bans (2035), Carbon Pricing (Revised EU
ETS from 2026), public infrastructure investment (electric charging points),
etc.

Which econometric tools are available to estimate the causal
effects of all these different policy options?



Forward and reverse causal questions
Empirical research mostly concerned with "Forward Causal"
questions: "Did X affect Y"? e.g. Diff-in-Diff
> Effect of single, known policy interventions in isolation (e.g.
carbon tax reform in 1991 on emissions)
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Empirical research mostly concerned with "Forward Causal"
questions: "Did X affect Y"? e.g. Diff-in-Diff

> Effect of single, known policy interventions in isolation (e.g.
carbon tax reform in 1991 on emissions)

X ?
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Here: "Reverse Causal" question: "What affected Y?"
(Gelman and Imbens, 2011, 2013)

» ‘Searching for new variables that are not yet in the model.’
> e.g. what caused emissions to fall since 20057
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Forward and reverse causal questions

Empirical research mostly concerned with "Forward Causal"
questions: "Did X affect Y"? e.g. Diff-in-Diff

> Effect of single, known policy interventions in isolation (e.g.
carbon tax reform in 1991 on emissions)
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Here: "Reverse Causal" question: "What affected Y?"
(Gelman and Imbens, 2011, 2013)

» ’Searching for new variables that are not yet in the model.’
> e.g. what caused emissions to fall since 20057
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This paper

Viable data-driven approach to identify a-priori unknown
policies or policy mixes that effectively reduce CO, emissions
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Method: Operationalization of reverse-causal modeling within the
domain of break detection in panel setting

1. Agnostically detect structural breaks in emissions relative to a
control group

» No a-prior knowledge: Any unit may be treated at any time
with heterogeneous treatment effects

» Machine learning to reduce the number of potential treatments

» Post-selection model is equivalent to conventional DID

2. Attribution of emission breaks to single policy or policy mix



This paper

Viable data-driven approach to identify a-priori unknown
policies or policy mixes that effectively reduce CO, emissions

Method: Operationalization of reverse-causal modeling within the
domain of break detection in panel setting

1. Agnostically detect structural breaks in emissions relative to a
control group

» No a-prior knowledge: Any unit may be treated at any time
with heterogeneous treatment effects

» Machine learning to reduce the number of potential treatments

» Post-selection model is equivalent to conventional DID

2. Attribution of emission breaks to single policy or policy mix

Application: “What reduced CO, emissions?” in the EU road
transport sector between 1995 and 2018



Related literature

Policy evaluation literature

Policy evaluation literature predominantly focuses on forward
causal questions using a range of time-tested, quasi-experimental
tools

P> DID (e.g. Klemetsen et al. 2020, Colmer et al. 2020); SCM (e.g.
Andersson 2019, Bayer and Aklin 2020)



Related literature

Policy evaluation literature

Policy evaluation literature predominantly focuses on forward
causal questions using a range of time-tested, quasi-experimental
tools

P> DID (e.g. Klemetsen et al. 2020, Colmer et al. 2020); SCM (e.g.
Andersson 2019, Bayer and Aklin 2020)

> Issues: (i) focus on tools-of-choice risks missing interventions that are
a-priori unknown or underestimated; (ii) focus on single policies in
isolation risks missing confounding or reinforcing policies

» This paper: Search for “causes of effects” to overcome potentially
infeasible effort of answering vast numbers of “effects of causes” questions



Related literature

Time series literature

Time series literature commonly links structural breaks to
policy
P UK climate policy (Castle and Hendry 2021), Paris agreement on stock
returns (Mukanjari and Sterner 2018), many others
» |ssue: No control groups, does not identify treatment effects if there are
trends
» Recent developments using LASSO in panel context (Okui and Wang
2021), but no focus on treatment evaluation



Related literature

Time series literature

Time series literature commonly links structural breaks to
policy
P UK climate policy (Castle and Hendry 2021), Paris agreement on stock
returns (Mukanjari and Sterner 2018), many others
» |ssue: No control groups, does not identify treatment effects if there are
trends
» Recent developments using LASSO in panel context (Okui and Wang
2021), but no focus on treatment evaluation

» This paper: Introduces break detection to panel setting with focus on
treatment evaluation using interactions (akin to Wooldridge 2021)



Structural Breaks

> Unexpected (often rapid) change in the stability of regression
parameters (mean or variance)

» Many sudden changes, particularly when unanticipated, cause links
between variables to shift

» Often breaks caused by events outside the analysis at hand (e.g.,
policy implementation, tipping points, wars, innovation)

» In time series dealt with by adjusting the intercept (e.g.
Step-Indicator Saturation)
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From Castle and Hendry, 2020



Method: Standard setting with known timing & assignment
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Method: Standard setting with known timing & assignment

» Consistent treatment effect estimation with two-way fixed
effects estimator (TWFE):
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effects estimator (TWFE):
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» Note: binary treatment variables D; ; — denoting interactions
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Method: Standard setting with known timing & assignment
» Consistent treatment effect estimation with two-way fixed

effects estimator (TWFE):
Vit =0i+@:+TXDit+&;

» Note: binary treatment variables D; ; — denoting interactions
of indicators treat; for treated & post; for post-treatment —
are equivalent to breaks in the intercept of treated units

Elyit|treati=1] = oi+7T X lt=post+ ¢
= O+ 0
o for t < post
where a; ; = ' P
' a;+71 fort > post

» Step-shift 7 in the treated units’ intercepts when switching
from pre- to post-treatment period
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General idea

» Equivalence between step-shifts in the unit-specific intercept
(i.e. group fixed effect) and known treatment specification
(e.g. when using DiD) suggests alternative approach to
evaluate reverse causal questions
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estimate a TWFE estimator in search of potential structural
breaks (step-shifts) in the unit-specific intercepts



Method: Unknown timing & assignment

General idea

» Equivalence between step-shifts in the unit-specific intercept
(i.e. group fixed effect) and known treatment specification
(e.g. when using DiD) suggests alternative approach to
evaluate reverse causal questions

» Rather than exclusively evaluating known interventions, we
estimate a TWFE estimator in search of potential structural
breaks (step-shifts) in the unit-specific intercepts

» Once a break has been identified, it can be interpreted as a
treatment for the relevant unit



Method: Unknown timing & assignment
Step 1: Saturate a TWFE model with a full set of step-shifts

Step-shifts for every i and t:
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Method: Unknown timing & assignment
Step 1: Saturate a TWFE model with a full set of step-shifts

Region 1 (treated)

| Treatment unknown a—priori

20 30

40

Step-shifts for every i and t:

N T
Vit =0+ ¢+ Z Z Tj7s]]{i:j,t25}+8i,t
j=1s=2

» Operationalizes the notion of
Gelman and Imbens (2013)
that reverse causal questions
require “searching for new
variables that are not yet in
the model’

» Nests "known treatments"
as a special cases



Method: Unknown timing & assignment

Step 2: Apply variable selection methods from machine learning

ML selection algorithm to move

2 N T
Region 1 (reated) ) — | from general model that embeds
all possible breaks to a sparse

] ‘ ! model w/ only relevant breaks
o - \ ; Treatment unknown a—priori A
o : Yie=Cit0et Y Y Gelijemsy e
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NI A TN P where Tr denotes set of detected

treated units w/ treatment times 'f]

L L | Here: "gets" algorithm
T T T T T P Targets false positive rate 7,
0 10 20 30 40 . ~ T
P(l € Tr|treat; :0) =1-(1-7)

alternative machine learning algorithms



Method: Unknown timing & assignment

Step 3: Estimate post-selection model

Treatment Effect
(detected)

Region 1 (treated)

| Treatment unknown a—priori

"] Region 2 (untreated)

40

> Identifies (possibly multiple)

unit-specific treatment
effects 7; (averaged over
time) conditional on
treatment effects being
non-zero

Conditional on having
detected treatment, resulting
model is identical to
imposing known intervention
in TWFE with interactions



Method: Unknown timing & assignment

Step 4: Attribute detected treatment effects to policy interventions

» Confidence interval for the timing of each detected step-shift
Tj to accommodate for timing uncertainty

> Resort to well-established policy databases to find policy
measures implemented in the years in the confidence intervals

» |EA’s Policies and Measures Database

» Climate Change Laws of the World

» National Communications to the UNFCCC
> .



Method: More formal discussion

Discussion of this method, its properties and simulation results can
be found in our newest Working Paper (Pretis and Schwarz,
Working Paper)

Discovering What Mattered:
Answering Reverse Causal Questions by Detecting Unknown
Treatment Assignment and Timing as Breaks in Panel Models

Felix Pretis"? and Moritz Schwarz*

! Department of Economics. Ul y of Victoria
*Climate Econometrics, Nuffield niversity of Oxford

*Smith School of Enterprise and the Environment. University of Oxford

January 1™, 2022

Abstract

Implementation of this using the gets R-package as well as it's
extension getspanel.



Application: EU transport emissions

» Identical technological standards at EU level but largely
varying national policy measures across Member States —
Unable to consider fuel standards, as set on the EU level
i.e. no variation across units.

Vehicle purchase/
Carbon & fuel taxes Road tolls registration taxes

ONLEADED 35 ‘

Ueg,
PLys"OER

Subsidies & tax credits

131 ghom

% orm
i1 ghom
5 o
76 ot So00c

SPEED
LIMIT

75




Application: EU transport emissions
Data

» Emissions data from Emissions Database for Global
Atmospheric Research (EDGAR)

» Samples include EU-15 and EU-31 (incl. UK, Norway,
Switzerland, Iceland)

> 1995 - 2018



Application: EU transport emissions

Data

Further Time Series Plots



Application: EU transport emissions

Model
Saturated starting model
log(GPD)
controlling for x; , = log(GDP)?
(Iog(population))
For EU-15 sample:
N=15 T=24
log(CO)je =i+ 0+ Y, Y Tslicjesst +Xi.B+Eit
j=1 s=2

Model selection over N(T —1) = 345 potential break variables




Results: Break detection
using “gets’ with false-positive rate targets of 5%, 1%, or 0.1%

Austria
Belgium
Denmark
Finland
France
Germany

Greece
Ireland

Italy
Luxembourg

Netherlands
Portugal
Spain

Sweden

United Kingdom

results table
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Results: Treatment effects

Denmark Finland Germany
96 123
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Results: Attribution

Country Break Year  Policy

Denmark 2012 6 2008: Carbon tax increase
2010: “Green ownership tax”: new taxes for light commercial vehicles
2010: Vehicle tax increase for cars without particle filters



Results: Attribution

Country Break Year  Policy

Finland 2000 42 1996-1999: Carbon tax increases
2001: Car tax changed from total mass to CO, emissions



Results: Attribution

Country Break Year  Policy

Germany 2003 £3 1999-2003: “Ecological Tax Reform* increases motor fuel tax
2001: Harmonization of commuter tax deduction
2004: Mandatory fuel efficiency labelling for vehicles
2005: Road tolls for trucks



Results: Attribution

Country

Break Year

Policy

Ireland

2011 £2

2008: Vehicle tax base shifts to CO, emissions
2009: Tax incentives for purchase of bicycles
2010: Introduction of carbon tax, increase in 2012
2010: Bio-fuel obligations



Results: Attribution

Country

Break Year

Policy

Denmark

Finland

Germany

Ireland

Ireland

2012 +6

2000 +2

2003 +3

2011 £2

2015 2

2008: Carbon tax increase

2010: “Green ownership tax™: new taxes for light commercial vehicles
2010: Vehicle tax increase for cars without particle filters
1996-1999: Carbon tax increases

2001: Car tax changed from total mass to CO, emissions
1999-2003: “Ecological Tax Reform*“ increases motor fuel tax
2001: Harmonization of commuter tax deduction

2004: Mandatory fuel efficiency labelling for vehicles

2005: Road tolls for trucks

2008: Vehicle tax base shifts to CO, emissions

2009: Tax incentives for purchase of bicycles

2010: Introduction of carbon tax, increase in 2012

2010: Bio-fuel obligations

2014: Carbon tax increase



Results: Attribution

Country Break Year  Policy

Luxembourg 2007 %3 2007: Vehicle tax reform based on CO, emissions
2007: Subsidy for purchase of energy efficient vehicles
2007-2008: Fuel tax raised




Results: Attribution

Country Break Year Policy

Luxembourg 2015 +1 2013-2014: Subsidies for electric & low emission vehicles
2015: VAT raise from 15% to 17% increases tax burden of fuel and buying vehicles




Results: Attribution

Country Break Year  Policy

Portugal 2011 +4 2007: Vehicle tax reform based on CO, emissions
2010: Incentives to purchase electric vehicles
2012: Introduction of nationwide road tolls




Results: Attribution

Country

Break Year

Policy

Sweden

2001 +2

2001-2006: “Green Tax Shift*

(i) carbon tax increase

(ii) exemptions for biofuels from energy and carbon taxation since 2002
(iii) tax benefits for green company cars since 2002




Results: Attribution

Country

Break Year

Policy

Sweden

2006+3

2001-2006: “Green Tax Shift”

(i) exemptions for biofuels from energy and carbon taxation since 2002
(if) carbon tax increase & tax benefits for green company cars since 2002
2005: mandate fuel stations to supply biofuel

2006: Introduction of congestion charges in Stockholm

2007-2009: Subsidy for eco-friendly vehicles

2008-2009: Carbon tax increase




Results: Categorization of effective policies

Austria
Belgium
Denmark
Finland
France
Germany

Greece

Ireland

Italy

Luxembourg

Netherlands
Portugal
Spain

Sweden

United Kingdom
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"I don't buy it"

We repeatedly find that carbon and fuel taxes matter. But can we
back this up with the data? (Data from Dolphin et al. (2020))
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"I don’t buy it"

We repeatedly find that carbon and fuel taxes matter. But can we
back this up with the data? (Data from Dolphin et al. (2020))
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Our model finds carbon pricing changes, even though we did not
feed it any information on it.



Results: Summary |

Detect 10 'large’ interventions with -8% to -20% reductions in CO2
road emissions across 7 countries.

1. Treated (detected): 7
2. Control: 5 (EU15) or 24 (EU31)



Results: Summary |

Detect 10 'large’ interventions with -8% to -20% reductions in CO2
road emissions across 7 countries.

1. Treated (detected): 7

2. Control: 5 (EU15) or 24 (EU31)

3. Largest effects (Finland 2000, Germany 2002/03, Luxembourg
2015, Ireland 2015) linked to increases of existing but
moderate carbon or fuel taxes.

4. Emission reductions linked to price interventions increasing
cost of driving
» Link 6 cases to carbon taxes and 2 cases each to fuel taxes and
road tolls
» Link 7 of the 10 unique breaks to policy mixes combining taxes
with subsidies

Suggests that commitment to staggered, anticipated, and
permanent tax increases over time can be particularly effective



Results: Summary |

5. Only one detected emission reductions attributable to a single
policy. Investigating a single policy therefore is likely to miss
the effects of supplementary policies.

6. All detected emission reductions attributed to at least one tax
intervention that increases the cost of driving

» Indicates that carbon, fuel, or road use taxes are critical
elements of effective policy mixes



Results: Summary |

5. Only one detected emission reductions attributable to a single
policy. Investigating a single policy therefore is likely to miss
the effects of supplementary policies.

6. All detected emission reductions attributed to at least one tax
intervention that increases the cost of driving

» Indicates that carbon, fuel, or road use taxes are critical
elements of effective policy mixes

7. Majority of emission reductions attributed to policy mixes that
combine aforementioned taxes with vehicle taxes or subsidies

» Suggests that policy mixes that simultaneously address the
energy efficiency gap and rebound effects are effective



Limitations

v

Set-up does not allow identification of EU wide policies, such
as Fuel Efficiency Standards. But same problem with DiD
(Forward Causal)

Appropriate judgement necessary for Attribution
Further covariates enable testing attribution links further

Currently only considering emission reducing breaks - positive
breaks disregarded

Risk to identification: Spillovers across countries (similar to
forward causal studies)

Differentiation between policies and structural breaks due to
e.g. debt crisis not possible



Conclusion

> We propose a complementary approach to ex-post policy
evaluation: Instead of estimating the effect of a single, known
cause on emissions, we seek to identify the multiple, known
and unknown causes of an emissions effect

> As policy makers implement ever more climate policy mixes to
meet their net-zero targets, we believe our novel approach is
policy relevant because it enables drawing systematic
inference on the effectiveness of such policy mixes

» Use case demonstrated for the EU transport sector — the key
bottleneck for climate-neutrality in EU



Outlook

» Approach is readily applicable to many other contexts

» Both further country and sector (e.g. electricity or agriculture)
applications in the pipeline

» More flexibility in the shape of step-indicators e.g., Smooth
Policy Indicators that allow for a policy to phase-in and out

» Further robustness checks (e.g. excluding certain countries due
to fuel tourism)



Thank You

Moritz Schwarz

moritz.schwarz@ouce.ox.ac.uk
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Appendix



Properties & Nuances

» |dentify each treated unit with separate interaction — bypasses
weighting problem in DiD (Goodman-Bacon, 2021; Callaway
and Sant'anna 2020, etc.)

» Multiple breaks detected: equivalent to staggered treatment
through interactions Wooldridge (2021)
» Time-varying Treatment effects
» Piece-wise constant through linear combinations of
step-functions.
» Fully-time varying treatment effects through interactions
(replace step-functions with impulse indicators)
» Detect treatment conditional on treatment effects being
non-zero.

» Conditional on having detected treatment, resulting model is
identical to imposing known intervention in TWFE with
interactions

» Post-Detection Attribution: comparable to arguing ‘as if
random assignment’ in ‘known’ treatment setting.



Machine learning selection algorithms

Range of machine learning algorithms available

1. Block search algorithm “gets”
(Pretis et al. 2018; Schwarz and Pretis 2021)

» Applies a near-exhaustive tree search over candidate variables

» Targets false positive rate which converges to the chosen level
of significance of selection Y. as n — o

» Approximate break date uncertainty

2. Shrinkage-based methods such as the (adaptive) LASSO
(Tibshirani 1996)

» Do not target the false positive rate
» Simulations suggest less power and less stable false-positive
rate when compared “gets”



Machine learning selection algorithms

Simulation Performance (Pretis 2019)
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Results table

Country Model
1 2 3 4 5 6
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significance level for breaks
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Results table

Country Model
1 2 3 4 5 6
EU-15 EU-15 EU-15 EU-31 EU-31 EU-31
significance level for breaks
5% 1% 0.1% 5% 1% 0.1%
H’s rea effect 7(8632) 7(868?)
¥ ci 2997 2901
nd brea (0031)  (0:030) (0.035) (0.038)
(LT ghfect @8t 88%) 883 (83%
59 c CERE T T A
Portugal efFect —(883%)
85% a1 2013
eedsan sffect 0883 888 B8y
¥ ci 205 205 299
e theak) gffect 6398 883
¥ ci 20 2998




Emissions data
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Simulation Performance: 1 Treated, 9 Control

p=0.01 (Selection & Testing)

2 4 | — Break-Detection (Unknown Interv.)
— Diff-in-Diff (Known Intervention) °
— -False-Positive Rate
L)
Correct Rej. Freq.:
Diff-in-Diff 2
© (Known Intervention)
.
[ \
) g
5 35 Correct Rej. Freq.:
S o | £ Break—Detection
g s le (Unknown Interv.)
o I3
B
5 g
B o
3 = °
o
X < | d
S
~
© .
° False-positive rate
break-detection
o Lé o A o ! 0.01
2
T T T T T
0.0 05 1.0 15 20

Treatment Magnitude



Simulation Performance: 1 Treated, 9 Control

p=0.01 (Selection & Testing)
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Application: EU Transport Emissions
Starting Model (treatment at any point in time for each unit):

N 2018

log(CO2)i+ = Ot + ¢r + Z Z Ts1{izjt>s) +X:{,tB tEit
j=15=1096

Selection (targeting y. = 0.05, =0.01 & =0.001) — yielding Sparse
Model:

log(CO2); ;= Gi+0c+ Y, Y. Tisliizjiezs) +Xi.:B
jeTrseT;
gets: Expected False Positive — Example: y. =0.001, T =24

» Expected number of false positive periods for a single country =
0.001x(T-1)=0.023<1

» Probability of at least one false-positive treated period (per ctry):
1—(1-0.001)(T"1) =0.02
» Expected number of false-positive treated countries:

> EU-15: 0.02x15=0.36<1
> EU-31: 0.02x31=0.73<1
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