A statistical analysis of time trends in atmospheric ethane

Marina Friedrich, E. Beutner, H. Reuvers, S. Smeekes, J.-P. Urbain Climate Econometrics Seminar - 21.09.2021

Paper and co-authors

 Talk is based on the paper A statistical analysis of trends in atmospheric ethane, Climatic Change 162, 105-125, 2020

```
https://link.springer.com/article/10.1007/
s10584-020-02806-2
```

- Additional co-authors from the geo- and astrophysics community: W. Bader, B. Franco, B. Lejeune, E. Mahieu
- New co-author for the extension / multivariate analysis S.J.
 Koopman

Outline

- 1. Motivation
- 2. The data
- 3. Trend analysis
 - 3.1 broken linear trend
 - 3.2 nonparametric trend
 - 3.3 inference on trend shapes
- 4. (Multivariate) Extensions
- 5. Conclusion

Motivation

- Trend analysis tool for atmospheric time series (ethane)
- What is ethane?
 - √ after methane, it is the most abundant hydrocarbon gas
 - √ from anthropogenic activities in Northern Hemisphere
 - √ useful indicator of atmospheric pollution
- Why study ethane?
 - √ used to measure anthropogenic methane emissions
 - √ indirect greenhouse gas, increasing lifetime of methane
 - √ contributes to the formation of 'bad' (ground-level) ozone
 - √ emitted during shale gas extraction

The data

The data

- Northern Hemisphere
 - ✓ Jungfraujoch: 1986-2019, 2935 data points, 89.9 per year
 - √ Thule: 1999-2014, 814 data points, 54.4 per year
 - √ Toronto: 2002-2014, 1399 data points, 112.1 per year

- Southern Hemisphere
 - ✓ Lauder: 1992-2014, 2550 data points, 115.9 per year

The model

We consider the **general model**:

$$y_t = d_t + s_t + u_t,$$

where d_t is the long-run trend, our object of interest, and $u_t = \sigma_t v_t$ with v_t a linear process,

with seasonal pattern:

$$s_t = \sum_{j=1}^S a_j \cos(2j\pi t) + b_j \sin(2j\pi t),$$

and missing observations:

$$M_t = \left\{ egin{array}{ll} 1 & ext{if } y_t ext{ is observed} \\ 0 & ext{if } y_t ext{ is missing} \end{array} \right. \quad t = 1, \ldots, T.$$

The model

We consider two **trend specifications**:

(1) A broken linear trend of the form

$$d_t = \alpha + \beta t + \delta D_{t,T_1},$$

where

$$D_{t,T_1} = \begin{cases} 0 & \text{if } t \leq T_1, \\ t - T_1 & \text{if } t > T_1. \end{cases}$$

(2) A nonparametric trend of the form

$$d_t = g(t/T), \qquad t = 1, ..., T,$$

where $g(\cdot)$ denotes a smooth (i.e. twice-differentiable) function defined on the unit interval.

Broken linear trend

We test the null hypothesis of no break vs. one break using

$$F_{T} = \min_{\alpha,\beta,s_{t}} \sum_{t=1}^{T} M_{t} (y_{t} - \alpha - \beta t - s_{t})^{2}$$
$$- \inf_{T_{c} \in \Lambda} \min_{\alpha,\beta,\delta,s_{t}} \sum_{t=1}^{T} M_{t} (y_{t} - \alpha - \beta t - \delta D_{t,T_{c}} - s_{t})^{2},$$

as the "usual" test statistic (Bai and Perron, 1998) where for some $0 < \lambda < \frac{1}{2}$, we specify $\Lambda = [\lambda T, (1 - \lambda)T]$.

We use the autoregressive (AR) wild bootstrap for

- critical values of break test
- confidence intervals around parameter estimates
- confidence intervals around break location

AR wild bootstrap – general idea

- The AR wild bootstrap is a modified version of the wild bootstrap which can handle autocorrelation
- We obtain bootstrap errors as $u_t^* = \xi_t^* \hat{u}_t$
- Usually, the ξ_t^* 's are i.i.d. random variables with $\mathbb{E}^*(\xi_t^*)=0$ and $\mathbb{E}^*(\xi_t^*)^2=1$
- Here, the ξ_t^* 's are allowed to be dependent: they are generated by an AR(1) model
- The residuals are not resampled as in many other bootstrap methods which helps us keep the missing data pattern intact

AR wild bootstrap algorithm - break test

1. Calculate the following residuals, for t = 1, ..., T,

$$\hat{u}_t = M_t \left(y_t - \hat{\alpha} - \hat{\beta}t - \hat{s}_t \right).$$

- 2. Generate $\xi_t^* = \gamma \xi_{t-1}^* + \nu_t^*$ with ν_1^*, \dots, ν_n^* as i.i.d. $\mathcal{N}(0, 1 \gamma^2)$.
- 3. Calculate the bootstrap errors $u_t^* = M_t \xi_t^* \hat{u}_t$ and generate the bootstrap sample as

$$y_t^* = M_t \left(\hat{\alpha} + \hat{\beta}t + \hat{s}_t + u_t^* \right)$$

for t = 1, ..., T.

- 4. Obtain the break test statistic F_T^* from y_t^* .
- 5. Repeat Steps 2 to 4 B times.

Results

Nonparametric trends

To allow for more flexible trend shapes, we model the trend by

$$d_t = g(t/T), \qquad t = 1, ..., T,$$

as a smooth function of (rescaled) time.

- Estimation is done using a nonparametric kernel smoother (Nadaraya-Watson estimator).
- We use the AR wild bootstrap to construct (simultaneous) confidence intervals around the estimated trend.

Trend estimation

We focus on the **local constant** estimator for $\tau \in (0,1)$:

$$\hat{g}(\tau) = \arg\min_{g(\tau)} \sum_{t=1}^{T} K\left(\frac{t/T - \tau}{h}\right) M_t \left\{y_t - g(\tau)\right\}^2$$

$$= \left[\sum_{t=1}^{T} K\left(\frac{t/T - \tau}{h}\right) M_t\right]^{-1} \sum_{t=1}^{T} K\left(\frac{t/T - \tau}{h}\right) M_t y_t,$$

where $K(\cdot)$ is a kernel function and h > 0 is a bandwidth.

Presence of $\{M_t\}$ ensures that the estimator only depends on the actually observed data.

Data driven bandwidth selection

The bandwidth determines the smoothness of the trend estimate.

We consider a time series version of cross-validation, called **modified cross-validation** (Chu and Marron (1991)).

It is based on minimizing the criterion function $\frac{1}{T}\sum_{t=1}^{T}M_{t}\left(\hat{g}_{k,h}\left(\frac{t}{T}\right)-y_{t}\right)^{2}$ with respect to h, where

$$\hat{g}_{k,h}(\tau) = \frac{(T - 2k - 1)^{-1} \sum_{t:|t - \tau T| > k} K\left(\frac{t/T - \tau}{h}\right) M_t y_t}{(T - 2k - 1)^{-1} \sum_{t:|t - \tau T| > k} K\left(\frac{t/T - \tau}{h}\right) M_t}$$

is a leave-(2k + 1)-out version of the leave-one-out estimator of ordinary cross-validation.

Simultaneous confidence bands

- 1. For all $\tau \in (0,1)$, obtain pointwise quantiles $\hat{q}_{\alpha_p/2}(\tau), \hat{q}_{1-\alpha_p/2}(\tau)$ for varying $\alpha_p \in [1/B, \alpha]$.
- 2. Choose α_s such that

$$lpha_{s} = lpha_{p} \in [1/B,lpha] \left| \mathbb{P}^{*} \left[\hat{q}_{lpha_{p}/2}(au) \leq \hat{g}^{*}(au) - ilde{g}(au) \leq \hat{q}_{1-lpha_{p}/2}(au)
ight.$$
 $orall au \in (0,1)
ight] - (1-lpha)
ight|.$

3. Construct the simultaneous confidence bands as

$$I_{n,lpha}(au) = \left[\hat{g}(au) - \hat{q}_{1-lpha_s/2}(au), \hat{g}(au) - \hat{q}_{lpha_s/2}(au)
ight] \qquad au \in (0,1)\,.$$

Results

Inference on trend shapes

- We analyze some features of the nonparametric trend estimates:
 - √ (location of local extrema)
 - √ specification test: linearity
 - √ (monotonicity)
- We construct confidence intervals around the minimum of the nonparametric trend for the NH series.
- We analyze the post-minimum upward trend and test whether we find evidence for linearity and monotonicity.

Bootstrap-based specification test

The test is based on the following null hypothesis

$$\mathsf{H}_0: g(t) = g_0(\theta, t) \quad \forall t \in \mathcal{G}_m = \{t_1, t_2, ..., t_m\},\$$

where $g_0(oldsymbol{ heta},\cdot)$ belongs to a parametric family

$$G = \{g(\boldsymbol{\theta}, \cdot); \boldsymbol{\theta} \in \Theta \subset \mathbb{R}^d\}$$

We consider the linear trend function

$$g_0(t) = \alpha + \beta t$$

Under the alternative, the trend can be modeled by the nonparametric trend function g(t/T).

Bootstrap-based specification test

The test statistic is

$$Q_t = \left(\hat{g}(t/n) - g_0(\widehat{\theta}, t)\right)^2,$$

where $\hat{g}(t/n)$ denotes the nonparametric kernel estimator and $\hat{\theta}$ denotes the parameter estimates under the null hypothesis.

We consider the summary versions for the set $\mathcal{G}_m = \{t_1, t_2, ..., t_m\}$:

$$egin{aligned} Q_{ extit{ave}} &= rac{1}{m} \sum_{j=1}^m Q_{t_j} \ Q_{ extit{sup}} &= \sup_j Q_{t_j}. \end{aligned}$$

We obtain critical values using the AR wild bootstrap.

Results

Results

Jungfraujoch

- ✓ Minimum in Nov. 2006 (cf. break in May 2006)
- √ Linearity rejected
- √ Monotonicity rejected

Thule

- ✓ Minimum in June 2005 (cf. break in April 2007)
- √ Linearity not rejected
- √ Monotonicity not rejected

Toronto

- ✓ Minimum in Oct. 2008 (cf. break in Dec. 2008)
- √ Linearity not rejected
- √ Monotonicity not rejected

Multivariate extensions

Broken linear trends:

- ✓ Locate a common break using approach by Kim (2011)
- √ Direct extension of our univariate approach
- √ Estimate a common break among NH ethane trends
- ✓ Confidence intervals (CI) using extended ARW bootstrap
- ✓ Break is located in 2008.47 (June 2008)
- ✓ 95% CI: [2007.75; 2009.15] (Oct. 2007 Feb. 2009)

Smooth trends:

- + Modeling smooth (common) trends with an unobserved components model
- Extracting separate common trend components from NH and SH series
- + Testing for/locating common trend reversal patterns

Unobserved Components Time Series (UCTS) model

Classical time series decomposition: Trend + Seasonal + Irregular

$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

where y_t is the *ethane* time series, with Trend μ_t , Seasonal γ_t and Noise ε_t , for t = 1, ..., T.

- UCTS model can represented in state space form
- Loglikelihood evaluation via prediction error decomposition and Kalman filter
- Maximum Likelihood estimation of parameters via numerical optimisation
- Signal extraction of trend, seasonal and irregular using Kalman filter and smoothing
- Diagnostic checking and testing based on prediction errors
- Software: OxMetrics/STAMP and TSL/State Space Edition

Unobserved Components Time Series model

Classical time series decomposition for ethane time series:

$$y_t = \mu_t + \gamma_t + \varepsilon_t,$$

for t = 1, ..., T with signal of trend μ_t plus seasonal γ_t , and with noise ε_t .

The dynamic equations for trend and seasonal are

$$\mu_{t+1} = \mu_t + \beta_t + \eta_t, \qquad \eta_t \sim \mathsf{NID}(0, \sigma_\eta^2)$$

$$\beta_{t+1} = \beta_t + \zeta_t$$
 $\zeta_t \sim \mathsf{NID}(0, \sigma_{\zeta}^2)$

with trend μ_t , growth (or drift) β_t , disturbances η_t and ζ_t , and with seasonal $\gamma_t = \gamma_{1t}^* + \gamma_{2t}^*$ where γ_{it}^* is a time-varying *i*-yearly persistent cycle process, for i=1,2.

Multivariate Unobserved Components Time Series model

Multivariate time series decomposition with common trend:

$$y_{it} = \lambda_i \mu_t + \gamma_{it} + \varepsilon_{it},$$

with $i \in \{ \text{Jungfraujoch, Thule, Toronto} \}$, for $t = 1, \ldots, T$, and with loading λ_i , common trend μ_t , and the idiosyncratic seasonal γ_{it} and noise ε_{it} terms.

The common trend remains

$$\mu_{t+1} = \mu_t + \beta_t + \eta_t, \qquad \eta_t \sim \mathsf{NID}(0, \sigma_\eta^2)$$

while breaks in trends can be detected from estimates of η_t .

Ethane Jungfraujoch (in logs): classical decomposition

Level break detection: sign t-test changes (June 2008)

Tests for H_0 : $\delta = 0$ in $\mu_{t+1} = \mu_t + \beta_t + \delta x_t + \eta_t$ where

$$x_t = \left\{ egin{array}{ll} 1 & ext{for } t = au \ 0 & ext{otherwise} \end{array}
ight. \quad t = 1, \ldots, T \quad ext{and} \quad au = 1, \ldots, T.$$

Conclusion

- We propose a toolbox for flexible trend analysis to apply to atmospheric time series
- The challenge is to deal with missing data, autocorrelation, heteroskedasticity which can be achieved using the AR wild bootstrap
- We find a break in trend in all four time series of atmospheric ethane (NH: downward-upward, SH: downward-downward)
- Interesting extension: analyzing common trends

References

- √ Chu, C.-K. and J. S. Marron (1991). Comparison of two bandwidths selectors with dependent errors. Annals of Statistics 19, 1906-1918.
- ✓ Franco, B., Bader W., Toon G.C., Bray C., Perrin A., Fischer E.V., Sudo K., Boone C.D., Bovya B., Lejeune B., Servais C. and E. Mahieu (2015). Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch. Journal of Quantitative Spectroscopy and Radiative Transfer 160, 36-49.
- ✓ Friedrich, M., Smeekes, J.-P. and J.-P. Urbain (2020). Autoregressive wild bootstrap inference for nonparametric trends. Journal of Econometrics 214, 81-109.
- √ Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross sectional dependence. Journal of Econometrics 164, 310-330.