A statistical analysis of time trends in
atmospheric ethane

Marina Friedrich, E. Beutner, H. Reuvers, S. Smeekes, J.-P. Urbain

Climate Econometrics Seminar — 21.09.2021




Paper and co-authors

e Talk is based on the paper A statistical analysis of trends in
atmospheric ethane, Climatic Change 162, 105-125, 2020

https://link.springer.com/article/10.1007/
s10584-020-02806-2

e Additional co-authors from the geo- and astrophysics
community: W. Bader, B. Franco, B. Lejeune, E. Mahieu

e New co-author for the extension / multivariate analysis S.J.
Koopman


https://link.springer.com/article/10.1007/s10584-020-02806-2
https://link.springer.com/article/10.1007/s10584-020-02806-2

Outline

1. Motivation
2. The data

3. Trend analysis

3.1 broken linear trend
3.2 nonparametric trend
3.3 inference on trend shapes

4. (Multivariate) Extensions

5. Conclusion



Motivation

e Trend analysis tool for atmospheric time series (ethane)

e What is ethane?
v’ after methane, it is the most abundant hydrocarbon gas
v" from anthropogenic activities in Northern Hemisphere
v' useful indicator of atmospheric pollution

e Why study ethane?

used to measure anthropogenic methane emissions
indirect greenhouse gas, increasing lifetime of methane
contributes to the formation of 'bad’ (ground-level) ozone
emitted during shale gas extraction
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The data

e Northern Hemisphere
v" Jungfraujoch: 1986-2019, 2935 data points, 89.9 per year

v' Thule: 1999-2014, 814 data points, 54.4 per year

v' Toronto: 2002-2014, 1399 data points, 112.1 per year

e Southern Hemisphere
v' Lauder: 1992-2014, 2550 data points, 115.9 per year



The model

We consider the general model:
yt = di + st + uy,

where d; is the long-run trend, our object of interest, and
u; = o¢vy with v; a linear process,

with seasonal pattern:
S

St = Z aj cos(2jmt) + bjsin(2j7t),
j=1

and missing observations:

1 if y; is observed
Mt — . . ..
0 if y; is missing



The model
We consider two trend specifications:
(1) A broken linear trend of the form
dt =+ Bt"‘ 6Dt7T17

where

0 if t < Ty,
Dt,le .
t—T1 ift> Tq.

(2) A nonparametric trend of the form
dt:g(t/T)’ t=1,.,T,

where g(+) denotes a smooth (i.e. twice-differentiable)
function defined on the unit interval.



Broken linear trend

We test the null hypothesis of no break vs. one break using

T
FT—mln ZI\/I,_» yt—oz—ﬁt—st)2

«, 75t -1
T

— inf  min M (y: —a— Bt — 0D 1. — s 2
Tlce/\a,ﬁléstz t(ye—a—p t,Te ),

as the "usual” test statistic (Bai and Perron, 1998) where for some
0 <A< wespecify A=[AT,(1—-N\)T].

We use the autoregressive (AR) wild bootstrap for
e critical values of break test
e confidence intervals around parameter estimates

e confidence intervals around break location



AR wild bootstrap — general idea

e The AR wild bootstrap is a modified version of the wild
bootstrap which can handle autocorrelation

e We obtain bootstrap errors as u; = £ ¢

e Usually, the &;'s are i.i.d. random variables with E*({;) =0
and E*(¢)2 =1

e Here, the {f's are allowed to be dependent: they are
generated by an AR(1) model

e The residuals are not resampled as in many other bootstrap
methods which helps us keep the missing data pattern intact



AR wild bootstrap algorithm — break test
1. Calculate the following residuals, for t =1, ..., T,
0y = M; ()/t_OAé_Bt_gt)-

2. Generate {f = y&f_; +vf with v, ... v
ii.d. V(0,1 —~2).

as

*
n

3. Calculate the bootstrap errors uf = M:£f i and generate the
bootstrap sample as

yi = M; <@+Bt+§t+u:)
fort=1,...,T.

4. Obtain the break test statistic FT from y;.

5. Repeat Steps 2 to 4 B times.



Results
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Nonparametric trends

e To allow for more flexible trend shapes, we model the trend by
de =g(t/T), t=1,..., T,

as a smooth function of (rescaled) time.

e Estimation is done using a nonparametric kernel smoother
(Nadaraya-Watson estimator).

e We use the AR wild bootstrap to construct (simultaneous)
confidence intervals around the estimated trend.



Trend estimation

We focus on the local constant estimator for 7 € (0,1):

)
ar)=arg min S K (15T M ()

g(7) t=1
T -1 7
t/T—7 t/TT)
N M K M.ye,
()] e ()

where K(-) is a kernel function and h > 0 is a bandwidth.

Presence of {M;} ensures that the estimator only depends on the
actually observed data.



Data driven bandwidth selection

The bandwidth determines the smoothness of the trend estimate.

We consider a time series version of cross-validation, called
modified cross-validation (Chu and Marron (1991)).

It is based on minimizing the criterion function
T Zt 1 M (gk h( ) yt) with respect to h, where

(T—2k=1)7' 30 rrsi K < ) Mey:
(T—2k—1) Zt\t TT\>kK</ >Mf

Bi,n(T) =

is a leave-(2k + 1)-out version of the leave-one-out estimator of
ordinary cross-validation.



Simultaneous confidence bands

1. For all 7 € (0,1), obtain pointwise quantiles
Go,p/2(T); G1—a,/2(T) for varying a,, € [1/B, a].

2. Choose as such that

s = arg min
ap€[l/B,a]

: [%pp(r) <2 (1) ~ £(r) < G1-aypal7)

VT € (0,1)] —(1-a)

3. Construct the simultaneous confidence bands as

Ina(7) = [8(7) = G1-0,/2(7),8(7) = Ga,o(T)] T €(0,1).
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Inference on trend shapes

e We analyze some features of the nonparametric trend
estimates:
v" (location of local extrema)
v’ specification test: linearity
v" (monotonicity)

e We construct confidence intervals around the minimum of the
nonparametric trend for the NH series.

e We analyze the post-minimum upward trend and test whether
we find evidence for linearity and monotonicity.



Bootstrap-based specification test

The test is based on the following null hypothesis
Ho:g(t)=g0(0,t) VteGm,={ti,t2,...,tm},
where go(6, -) belongs to a parametric family
G={g(8,);0 c©CRY}
We consider the linear trend function
go(t) = a+ ft

Under the alternative, the trend can be modeled by the
nonparametric trend function g(t/T).



Bootstrap-based specification test

The test statistic is
R - 2
Qe = (&(¢/m) —g(6.1)) ",

where g(t/n) denotes the nonparametric kernel estimator
and @ denotes the parameter estimates under the null hypothesis.

We consider the summary versions for the set G, = {t1, t2, ..., tm}:
1 m
Qave = ; Z Qtj
j=1
qup = sup Qtj
J

We obtain critical values using the AR wild bootstrap.
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Results

e Jungfraujoch

v Minimum in Nov. 2006 (cf. break in May 2006)
v’ Linearity rejected
v" Monotonicity rejected

e Thule

v Minimum in June 2005 (cf. break in April 2007)
v’ Linearity not rejected
v" Monotonicity not rejected

e Toronto
v Minimum in Oct. 2008 (cf. break in Dec. 2008)
v’ Linearity not rejected
v" Monotonicity not rejected



Multivariate extensions

e Broken linear trends:
v' Locate a common break using approach by Kim (2011)
v’ Direct extension of our univariate approach
v/ Estimate a common break among NH ethane trends
v' Confidence intervals (Cl) using extended ARW bootstrap
v' Break is located in 2008.47 (June 2008)
v 95% ClI: [2007.75; 2009.15] (Oct. 2007 - Feb. 2009)

e Smooth trends:
+ Modeling smooth (common) trends with an unobserved
components model
+ Extracting separate common trend components from NH
and SH series
+ Testing for/locating common trend reversal patterns



Unobserved Components Time Series (UCTS) model

Classical time series decomposition: Trend + Seasonal + Irregular

Ye =t + 7t T €

where y; is the ethane time series, with Trend p, Seasonal +; and
Noise ¢, for t =1,..., T.

UCTS model can represented in state space form

Loglikelihood evaluation via prediction error decomposition and
Kalman filter

Maximum Likelihood estimation of parameters via
numerical optimisation

Signal extraction of trend, seasonal and irregular using
Kalman filter and smoothing

Diagnostic checking and testing based on prediction errors

Software: OxMetrics/STAMP and TSL/State Space Edition



Unobserved Components Time Series model

Classical time series decomposition for ethane time series:

Yt = bt + 7t €y,

for t =1,..., T with signal of trend u: plus seasonal ~,
and with noise ¢;.

The dynamic equations for trend and seasonal are
pe1 = pt + Br + ey e ~ NID(O»JE;)

Bry1 = Pt + Gt Gt ~ NlD(O,UE)
with trend p¢, growth (or drift) S;, disturbances 7; and (;, and
with seasonal v; = 77, + 75, where 77, is a time-varying i-yearly
persistent cycle process, for i =1, 2.



Multivariate Unobserved Components Time Series model

Multivariate time series decomposition with common trend:
Yit = Aifbt + Vit + Eit,

with i € {Jungfraujoch, Thule, Toronto}, for t =1,..., T, and
with loading A;, common trend p:, and
the idiosyncratic seasonal 7;; and noise € terms.

The common trend remains

pe1 = pe + Be + e, ne ~ NID(O,Ug)

while breaks in trends can be detected from estimates of 7;.



Ethane Jungfraujoch (in logs): classical decomposition
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Level break detection: sign t-test changes (June 2008)
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Conclusion

e We propose a toolbox for flexible trend analysis to apply to
atmospheric time series

e The challenge is to deal with missing data, autocorrelation,
heteroskedasticity which can be achieved using the AR wild
bootstrap

o We find a break in trend in all four time series of atmospheric
ethane (NH: downward—-upward, SH: downward—downward)

o Interesting extension: analyzing common trends
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