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Abstract

Climate change impact studies inform policymakers on the estimated damages of future

climate change on economic, health and other outcomes. In most studies, an annual

outcome variable is observed, e.g. agricultural yield, annual mortality or gross domes-

tic product, along with a higher-frequency regressor, e.g. daily temperature. While

applied researchers tend to consider multiple models to characterize the relationship

between the outcome and the high-frequency regressor, to inform policy a choice be-

tween the damage functions implied by the different models has to be made. This

paper formalizes the model selection problem in this empirical setting and provides

conditions for the consistency of Monte Carlo Cross-validation and generalized infor-

mation criteria. A simulation study illustrates the theoretical results and points to the

relevance of the signal-to-noise ratio for the finite-sample behavior of the model selec-

tion criteria. Two empirical applications with starkly different signal-to-noise ratios

illustrate the practical implications of the formal analysis on model selection criteria

provided in this paper.
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1 Introduction

Using panel data, impacts of climate change have been extensively studied on aggregate

economic productivity (Burke et al. 2015; Dell et al. 2012; Hsiang 2010), micro-level produc-

tivity and economic returns (Addoum et al. 2020; Deryugina and Hsiang 2017; Somanathan

et al. 2021; Zhang et al. 2018), agricultural profits and crop production (Aragón et al. 2021;

Burke and Emerick 2016; Cui 2020; Deschênes and Greenstone 2007; Schlenker and Roberts

2009), energy consumption (Auffhammer et al. 2017; Li et al. 2019; Wenz et al. 2017), mi-

gration and labor allocation (Cattaneo and Peri 2016; Feng et al. 2010; Jessoe et al. 2018;

Mueller et al. 2014), human capital (Garg et al. 2020; Graff Zivin et al. 2018; Park et al.

2020), health and mortality (Barreca et al. 2016; Burke et al. 2018; Deschênes and Green-

stone 2011; Heutel et al. 2017), and conflicts (Harari and Ferrara 2018; Hsiang et al. 2011,

2013). While researchers tend to consider multiple models in their analysis of the relationship

between the outcome and temperature, both researchers and policymakers have to choose

between the implied damage functions, either to use them in an integrated assessment model

and/or to inform policy regarding climate mitigation and adaptation. This paper formalizes

the model selection problem in climate change impact studies and provides conditions for

model selection consistency for a class of model selection criteria in this context.

In typical climate change impact studies, for i = 1, 2, . . . , n, t = 1, 2, . . . , T , we observe

an outcome Yit and a regressor Witτ , which is observed at (higher) frequency, τ = 1, 2, . . . , H.

Practitioners tend to present results for a set of models {Mα}Aα=1, where each model uses

different summary statistics of the higher-frequency weather variable as regressors in a fixed

effects model, specifically Xit,α ≡ X(Wit, µα) = µα(Wit), where Wit ≡ {Witτ}Hτ=1. Among

the most commonly used summary statistics of temperature used in regressions are the an-

nual average (e.g., Dell et al. 2012), various degree day measures (e.g., Burke and Emerick

2016), seasonal averages (e.g., Mendelsohn et al. 1994) as well as temperature bins (e.g., De-
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schênes and Greenstone 2011). To capture nonlinearities in the annual average temperature,

a quadratic function there of is sometimes used (e.g., Burke et al. 2015). For a given α,Mα

specifies a linear model,

Yit =X ′it,αβα + ai,α + uit,α. (1)

Here, ai,α is a fixed effect, uit,α constitues idiosyncratic shocks. The subscript it in Xit,α

means that, for all α, the regressors are a function of the same Wit. This is a key feature of

this model selection problem. In practice, additional covariates, year fixed effects and flexible

time trends are included. To simplify our presentation, we do not include these additional

features. However, our analysis extends in a straighforward manner to accommodating them

as we show in our empirical applications.

We first formalize the model selection problem in climate change impact studies. This

formal treatment allows us to distinguish it from the classical variable selection problem in

linear regression. We note that even though the models considered in this empirical context

are linear in the parameters, they all consist of summary statistics of the same underlying

high-frequency regressor. This observation has implications for the definitions of nested

and non-nested models in this problem. We demonstrate the differences in these definitions

relative to the classical variable selection problem using analytical examples.

Next, we examine the conditions under which Monte Carlo cross-validation (MCCV) as

well as generalized information criteria (GIC) deliver model selection consistency. Building

on the large statistics literature on cross validation (Arlot and Celisse 2010), we present

conditions under which Monte Carlo cross-validation (MCCV) can deliver consistent model

selection. Consistent with Shao (1993), the MCCV with a vanishing training-to-full sample

ratio is shown to be model selection consistent if at least one of the models under con-

sideration nests the true model. Since the formal justification for the consistency of the

MCCV relies on the true model being under consideration as well as the homoskedasticity

and serially uncorrelatedness of the error term, we also include conditions for consistency of

model selection via GICs, which is a general class of model selection criteria that include the
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Akaike information criterion (AIC) and the Bayesian information criterion (BIC).1 This is

a natural step given the similarity in asymptotic behavior between AIC (BIC) and MCCV

with fixed (vanishing) training-to-full sample ratios (Shao 1997).2 Furthermore, examining

GICs allows us to formally examine the case of misspecification (where none of the models

under consideration nests the true model).

Adapting the conditions on model selection consistency of GICs (Sin and White 1996;

Vuong 1989), we show that the information criteria proposed in Sin and White (1996), here-

inafter SW, are consistent regardless of whether all models under consideration contain the

true DGP or not. Consistent with the MCCV results, we find that AIC is not model selection

consistent, while BIC is only consistent when at least one of the models under consideration

contains the true DGP. However, when this does not hold, the BIC may be inconsistent. This

is a novel illustration of the BIC inconsistency property, which was established previously

(Hong and Preston 2012; Sin and White 1996). We formally illustrate the special features of

our setting that lead to this result despite the fact that all models under consideration are

linear in the parameters. The issue specifically stems from the fact that the regressors in the

different models are summary statistics of the same underlying high-frequency regressor.

We demonstrate the theoretical results via simulations. Our baseline simulation results

confirm our theoretical predictions. When the true DGP is in the set of models under

consideration, the MCCV with vanishing training-to-full sample ratios, BIC, and the SW

criteria select it with probability approaching one as n increases. AIC and MCCV with fixed

training-to-full sample ratios tend to choose less parsimonious models that nest the true

DGP. When all models under consideration are misspecified however, only the SW criteria

exhibit model selection consistency. These results are consistent with our theoretical results

as well as the results in Shao (1997) regarding the relationship between AIC, BIC and MCCV.

In order to better understand the finite-sample behavior of the model selection criteria, we

1These only require the asymptotic normality of the parameter estimators and hence can accommodate

heteroskedasticity, serial and spatial dependence as long as a central limit theorem applies.
2It is important to point out that this issue is not well established in the empirical literature (Newell

et al. 2021).
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examine the behavior of GICs in designs with varying levels of signal-to-noise ratio (SNR)

(c.f. Hastie et al. 2020, for example). We find that for low SNR, the SW criteria may choose

the null model, even though the true DGP is a nontrivial function of temperature. For these

low SNR settings, our simulations indicate that BIC can choose the true DGP with high

probability. These simulation results point to the importance of considering different model

selection criteria as well as the signal-to-noise ratio in practice.

To illustrate the empirical relevance of our results, we conduct two empirical applications

with starkly different signal-to-noise ratios. For each application, we include the models

with different damage functions considered in the literature as well as more flexible versions

thereof. We first consider the relationship between temperature and crop yields which ex-

hibits sizeable signal-to-noise ratios of about 30-40%. In this application, while different

criteria select different models, the associated damage functions are qualitatively and quan-

titatively similar. Consistent with our theoretical predictions, the SW criteria choose the

smallest among those models.

The second application we consider examines the GDP-temperature relationship which

suffers from very low signal-to-noise ratios (<1%). In this application, the SW criteria

choose the model with no temperature over any other model we consider.3 While the re-

maining criteria select models that include temperature, these models deliver qualitatively

and quantitatively different damage functions. Importantly, despite the nearly negligable

signal-to-noise ratios for all models in this application, some models yield statistically sig-

nificant and quantitatively large coefficients. Given the inconsistency in these results, we

employ smoothing splines, a fully data-dependent procedure, to select the response function.

For the unbalanced panel, the smoothing spline fit yields an inverted U-shaped curve, sim-

ilar to the quadratic model chosen by the BIC, however the magnitude of the estimates is

substantially smaller. In the balanced case, the spline is very close to the zero horizontal

line. Hence, the smoothing spline estimates are more in line with the null model selected by

the SW criteria.

3These results are consistent with Newell et al. (2021), who conduct an extensive model comparison for

this application allowing not only with different damage functions, but also different controls.
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This paper has several practical implications for the use of model selection criteria in

climate change impact studies. First, rather than reporting the results of a particular model

selection criterion, applied researchers should report the results of the different model selec-

tion criteria we consider. The reasoning behind this recommendation stems from the fact

that if the true response function is nested in one of the models under considertaion, then the

different model selection criteria should select models that have similar response functions,

albeit with different number of parameters. This is well illustrated in the yield-temperature

example. Second, the signal-to-noise ratio should be reported given its implications for the

finite-sample performance of the criteria. Finally, for outcomes where the scientific literature

and/or economic theory do not specify the response function, a fully data-driven procedure

should be used.

This paper builds on the vast literature on the asymptotic properties of model selection

criteria (e.g. Arlot and Celisse 2010; Claeskens and Hjort 2008). Section 2.1 reviews the

classical variable selection problem in linear regression and relevant results (Shao 1993, 1997).

The literature on the asymptotic behavior of GICs in nonlinear model selection problems

and particularly the pseudo-inconsistency of BIC are relevant here (Hong and Preston 2012;

Sin and White 1996; Vuong 1989). Finally, while the data setting in this problem resembles

the mixed data sampling (MiDaS) literature (Andreou and Ghysels 2006; Ghysels et al.

2006, 2007), the modeling objectives in both literatures are distinct. The objective in the

MiDaS literature seeks to estimate the differential impact on the outcome of different lags

of the high-frequency regressor, whereas the climate change impacts literature seeks to use

summary statistics for the high-frequency regressor to characterize its relationship with the

outcome of interest.

The paper is organized as follows. Section 2 formalizes the model selection problem in

climate change impact studies contrasting it to the classical variable selection problem in

linear regression. Section 3 presents conditions for consistent model selection for MCCV

and GICs. Sections 4 and 5 provide simulation and empirical illustration of the theoretical

results.
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2 Model Selection Problem in Climate Change Impact Studies

In this section, we formalize the model selection problem in the climate change impact

studies. Since at first glance this problem seems akin to a simple variable selection problem

in linear regression, we first provide a brief review of this classical problem. Then, we proceed

to show how the model selection problem examined here departs from it in Section 2.2.

2.1 Concise Review of Variable Selection in Linear Regression

Before we proceed to examine the model selection problem in the climate change impacts

literature, we review the classical variable selection problem in linear regression. Consider a

multiple linear regression model with cross-sectional data, Mα, for i = 1, . . . , n,

yi = x′i,αβα + εi,α, (2)

where yi is the outcome variable, xi,α is a kα × 1 vector of regressors. Given a set of p

regressors, there are 2p possible combinations of these regressors that one could consider.4

Model selection criteria allow a practitioner to select between those models.

The properties of MCCV and GICs are well-understood in this context. For systematic

treatments of this vast literature, see Shao (1997), Claeskens and Hjort (2008) and Arlot and

Celisse (2010). If the true model is finite-dimensional, Shao (1993) shows that the MCCV

with vanishing training-to-full sample ratios is model selection consistent, whereas leave-

one-out cross-validation can overfit. Shao (1997) provides a general asymptotic framework

to compare MCCV and GIC with different tuning parameter choices. Shao (1997) shows

that AIC (BIC) and leave-one-out CV (MCCV with vanishing-to-full sample ratio) have

similar asymptotic behavior. If there is a “fixed-dimension correct model” (Shao 1997), BIC

would be model selection consistent similar to the MCCV with vanishing training-to-testing

ratios. AIC, while inconsistent in this case, would be asymptotically loss efficient.5 If there is

no fixed-dimensional correct model, AIC and leave-one-out cross-validation would be model

4In best subset selection, one would select the model that minimizes the criterion in question among all

2p models.
5These result suggest a trade-off between model selection consistency and loss efficiency. Yang (2005)
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selection consistent, whereas BIC and MCCV with vanishing training-to-full sample ratios

would not.

The above results imply that in order to examine model selection consistency, one has to

take a stance on whether the true model is finite-dimensional or not. Following the empirical

literature on climate change impacts which rely on flexible parametric models, we assume

that true model is finite-dimensional. This assumption is further supported by the models

used in the scientific literature to characterize the relationship between temperature and

yield, human health and other outcomes, which are finite-dimensional models.

We next proceed to examine the model selection problem in the climate change impacts

literature distinguishing it from the classical variable selection problem we reviewed here.

2.2 Formalizing Model Selection in Climate Change Impact Studies

The model selection problem faced by empirical researchers in the climate change impacts

literature consists of a choice between a finite set of models, M = {Mα : α = 1, 2, . . . , A},

where A < ∞. Each model Mα is defined by {µα, βα,Ξα}, where we remind the reader

that X(Wit, µα) = µα(Wit) is the set of summary statistics, βα is the model-specific re-

gressor coefficient vector, and Ξα is the conditional distribution of Yit,α|Wi, ai,α, where

Wi ≡ {Wi1, . . . ,WiT}. We let M?, with the outcome equation

Yit = X ′it,?β? + ai,? + uit,?,

denote the most parsimonious model that contains the outcome equation of the DGP, i.e.

for the true parameter value β?,o

Yit = X ′it,?β?,o + ai + uit,

where ai and uit are the individual fixed effects and the idiosyncratic shocks of the outcome

equation in the DGP. We recognize that the assumptions that the outcome equation is sep-

arable in the regressors and the unobservables, ai and uit, as well as linear in the parameters

shows that for the case where there is a fixed-dimension correct model, one cannot combine the strengths of

AIC and BIC, even using adaptive estimation.
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are strong. However, we maintain these assumptions to make progress on the problem at

hand.

2.2.1 Nested, Strictly Non-nested and Non-nested Overlapping Models

As pointed out above, all models considered contain different summary statistics of the same

underlying high-frequency regressor, hence the models are likely to be overlapping. However,

we would like to differentiate between different cases of overlapping models. Assume without

loss of generality kα < kγ. Let ω denote a realization of Wit. For a fixed realization ω, the

realizations of Xit,α and Xit,γ are given by xω,α = x(ω, µα) and xω,γ = x(ω, µγ), respectively.

Let Bα denote the parameter space of βα and βkα the kth element of βα.

We next provide formal definitions for when two models, Mα and Mγ, are nested, non-

nested overlapping or strictly non-nested.

Definition 1. (i) Mα is nested inMγ iff xω,α = Rα,γxω,γ for all ω, where Rα,γ is a kα×kγ
non-random matrix,

(ii) Mα andMγ are non-nested, overlapping iffMγ does not nestMα, but x′ω,αβα = x′ω,γβγ

for all ω and some βα ∈ Bα and βγ ∈ Bγ,

(iii) Mα andMγ are strictly non-nested iff they are not nested and x′ω,αβα 6= x′ω,γβγ for all

ω, βα ∈ Bα and βγ ∈ Bγ.

Note that according to (i), a model contains another if the regressors in the latter can be

expressed as a linear combination of the regressors in the former. This is different from the

typical linear regression framework where a model contains another if the regressors in the

latter are a subset of the regressors in the former, i.e. the elements in Rα,γ can only be zero

or one. We illustrate the above definitions with the following example.

Example 1. (Annual mean, Quarterly Mean and Quadratic in Annual Mean Models)

Let Mα denote the annual mean model, with outcome equation

Yit = X ′it,αβα + ai,α + uit,α , (3)
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where Xit,α = W̄it ≡
∑H

τ=1Witτ/H. The quarterly mean model uses instead the quarterly

means of Wit as regressors. Let Qq denote the set of values of τ in each quarter q =

1, . . . , 4. For a set A, |A| denotes its cardinality. In the quarterly mean model, Xit,γ =

(
∑

τ∈Q1
Witτ/|Q1|, . . . ,

∑
τ∈Q4

Witτ/|Q4|). Then Mγ prescribes the outcome equation

Yit = X ′it,γβγ + ai,γ + uit,γ. (4)

Note that Xit,α = Rα,γXit,γ, where

Rα,γ =
1

H

(
|Q1|, |Q2|, |Q3|, |Q4|

)
.

Hence, Mα is nested in Mγ.

The quadratic in annual mean model, Mδ, uses as regressors Xit,δ = (W̄it, W̄
2
it). Even

though the quadratic in annual mean and the quarterly mean models are not nested, if β2
δ = 0

and βkγ = βk
′
γ for k 6= k′, with k, k′ ∈ {1, 2, 3, 4}, then both models yield the annual mean

model given Wit. Hence, they are overlapping, non-nested.

2.2.2 Probability Limits of Fixed Effects Estimators

Given that all models considered here use regressors that are functions of different summary

statistics of the same time series, we formalize the (pseudo-)true parameter values of the

models under consideration. We first introduce the within-demeaning notation for linear

fixed effects estimation. For Vit, Ṽit = Vit − V̄i, where V̄i =
∑T

t=1 Vit/T . For Mα, the

within-transformation is given by

Yit = X ′it,αβα + ai,α + uit,α ,

Ỹit = X̃ ′it,αβα + ũit,α . (5)

The probability limit of the fixed effects estimator of the above model, which we refer to

as the pseudo-true parameter vector of Mα, is denoted by β∗α and is given in (6). Here,

we assume that {{Yit,Wit}Tt=1}ni=1 are i.i.d. across i and t.6 We further assume that the

6These assumptions are made to simplify the presentation of the probability limits. Clearly, the proba-

bility limits can be derived under weaker conditions
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estimation problem is sufficiently regular, and we also assume strict exogeneity of the high-

frequency regressor, E[uit|Wi1, . . . ,WiT , ai] = 0. Then

β∗α = plim
n→∞

(
n∑
i=1

T∑
t=1

X̃it,αX̃
′
it,α

)−1 n∑
i=1

T∑
t=1

X̃it,αỸit =
(
E[X̃it,αX̃

′
it,α]
)−1

E[X̃it,αX̃
′
it,?]β?,o. (6)

Equation (6) is the counterpart of the omitted variable bias formula in this problem. To

gain some intuition for (6), consider the case where both Xit,? and Xit,α are scalar. Then

β∗α =
E[X̃it,αX̃it,?]

E[X̃2
it,α]

β?,o = ρ∗,α

√√√√E[X̃2
it,?]

E[X̃2
it,α]

β?,o, (7)

where ρ∗,α = E[X̃it,αX̃it,?]/
√
E[X̃2

it,α]E[X̃2
it,?] is the within-correlation coefficient between

Xit,α and Xit,?. Under the assumption that β?,o is non-zero, the sign and the magnitude of

β∗α/β?,o will depend on the within-correlation between Xit,α and Xit,? as well as the ratio of

their variances. If the within-correlation between the two variables is positive, then β∗α and

β?,o will have the same sign, otherwise β∗α will have the opposite sign of β?,o. Suppose that

Xit,α and Xit,? have equal within-variance, then β∗α will tend to be smaller in magnitude the

weaker the within-correlation between Xit,α and Xit,?. This example of attenuation bias is

similar to the classical measurement error problem. If Xit,α has greater within-variance than

Xit,?, then the attenuation is greater. In general, the sign and relative magnitude of β∗α/β?,o

will depend on both ρ∗,α and the ratio of the within-variances of Xit,? and Xit,α.

Returning to the general (non-scalar) case, ifMα containsM?, i.e. Xit,? = R?,αXit,α for

some R?,α, then

β∗α = R′?,αβ?,o. (8)

For instance, if Mα is the quarterly mean model, and M? is the annual mean model,

β∗α =


|Q1|
H
...

|Q4|
H

 β?,o. (9)

Since Xit,α and Xit,? are summary statistics of Wit, if β?,o is non-zero, then we expect all

elements of β∗α to be non-zero, unless R?,α has zero rows. This is different from the standard
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variable selection problem, where the pseudo-true parameter value for models that contain

M? will have zero elements for variables that are not in the DGP in general.

3 Model Selection Consistency in Climate Change Impact Studies

In this section, we formally examine the conditions under which MCCV and GICs are model

selection consistent in the context of the climate change impact studies. Consistent with the

previous section, the properties of the model selection criteria we examine confirm that the

model selection problem here is not simply a variable selection problem in linear regression.

The asymptotic behavior of the model selection criteria is specifically similar to its behavior

in nonlinear model selection problems.

3.1 Monte Carlo Cross-Validation

Cross-validation is a very popular method in practice, because it directly measures out-of-

sample prediction error and seems “model-free”. It has been used in Schlenker and Roberts

(2009) and Gammans et al. (2017) to justify their model selection choice. In this section,

we establish conditions under which Monte Carlo cross-validation (MCCV) yields consistent

model selection.

Let Yi = (Yi1, . . . , YiT ) and Xi = (Xi1, . . . , XiT ). Given observations {Yi, Xi}ni=1, to

compute the MCCV mean squared error, we randomly draw a collection R of b subsets of

{1, . . . , n} with size nv (test sample size) and select a model M̂cv that minimizes, among

α = 1, . . . , A, the criterion given by

Γ̂MCCV
α,nT =

1

nvTb

∑
s∈R

‖Ys − Ŷα,sc‖2. (10)

Here Ys = (Y ′i )i∈s is an nT×1 vector that vertically stacks Y ′i for all i ∈ s and Ŷα,sc = X̃s,αβ̂
sc

α ,

where X̃s,α denotes the within-demeaned version of Xs,α = (X ′i,α)i∈s and β̂s
c

α is the estimator

of the parameter vector ofMα using the training data set {Yi,Wi}i∈sc , where sc denotes the

complement of s, i.e. the remaining b− 1 subsets in the collection R after removing subset

s.
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To proceed, we need to express the within-demeaned model in matrix form; c.f. Sec-

tion 2.2.2. For random variables Vit, with i = 1, . . . , n, t = 1, . . . , T , define Ṽi = (Ṽi1, . . . , ṼiT ),

and Ṽ = (Ṽ1, . . . , Ṽn)′. Further, write Ui, i = 1, . . . , n, to denote the error terms in the true

DGP, which are assumed to be conditionally mean zero. Then we can express the within-

demeaned version of model Mα in matrix form as

Ỹ = X̃αβα + Ũα.

Similarly to Shao (1993), we study the mean squared prediction error (MSPE) ofMα, which

is estimated using {Yi, Xi}ni=1, in predicting out-of-sample observations of Yi, which we will

refer to as Zi. Assume that the conditional variance of the error terms in the true DGP

(which are conditionally mean zero) is equal to E0[UiU
′
i |Wi] = σ2IT , and also assume that

{Yi, Xi} are i.i.d. across i. The expectation operators E0[·|Wi] in the preceding sentence

and E0[·|{Wi}ni=1] in the following displayed equation refer to the conditional distribution

derived from the true joint distribution of the Yi and Wi. The MSPE of the fitted model

Mα is given by

Γα,nT =
1

nT
E0

[
n∑
i=1

T∑
t=1

(Z̃it − X̃ ′it,αβ̂α)2

∣∣∣∣∣ {Wi}ni=1

]
=
T − 1

T
σ2 +

1

nT
σ2kα︸ ︷︷ ︸

model dimension

+ ∆α,nT︸ ︷︷ ︸
“misspecification” error

,

where ∆α,nT = 1
nT
β′?,oX̃′? (InT − Pα) X̃?β?,o ≥ 0 and Pα is the projection matrix onto the

column space of the design matrix X̃α. The derivation of the above equality is included in

Section A of the Appendix for the reader’s convenience. Several remarks are in order. The

homoskedasticity and serial uncorrelatedness of the idiosyncratic shocks are crucial to obtain

a component of the mean squared error that depends on the model dimension. As in Shao

(1993), it is convenient to consider two categories of models,

- Category I: ∆α,nT > 0,

- Category II: ∆α,nT = 0, when Xit,? = R?,αXit,α.
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The following standard conditions correspond to conditions in Shao (1993) which we have

adapted to the fixed effects linear model with stochastic regressors.

Condition 1. (MCCV Consistency)

1. (DGP and Models) For i = 1, 2, . . . , n, t = 1, 2, . . . , T , Yit = Xit,?β?,o + ai + uit, where

uit|Wi1, . . . ,WiT , ai
i.i.d.∼ (0, σ2) across i and t. For some α = 1, . . . , A, Mα =M?.

2. (Model Identifiability) plim infn→∞∆α,nT > 0 for Mα in Category I.

3. (Regularity Conditions)

i. X̃′αX̃α = Op(n) and
(
X̃′αX̃α

)−1

= Op(n
−1) for α = 1, 2, . . . , A,

ii. plimn→∞maxi≤n,t≤T wit,α = 0 ∀α = 1, 2, . . . ,A, where wit,α is the itth diagonal ele-

ment of Pα,

iii. maxs∈R

∥∥∥ 1
nv

∑
i∈s
∑T

t=1 X̃it,αX̃
′
it,α − 1

nc

∑
i∈s
∑T

t=1 X̃it,αX̃
′
it,α

∥∥∥ = op(1) for α = 1, 2, . . . , A.

Condition 1.1 imposes homoskedasticity and serial uncorrelatedness of the idiosyncratic

shocks. Condition 1.2 is the model identifiability condition for models in Category I. The

regularity condition in 1.3(i) is a high-level condition that ensures the existence of a law of

large numbers for X̃′αX̃α/n, and that it converges to an invertible matrix in probability for

any α = 1, . . . , A.

Proposition 1. Assume Condition 1, and nv/n→ 1 and nc = n−nv →∞, b−1n−2
c n2 → 0.

(i) If Mα is in Category I, then for some Rn ≥ 0,

Γ̂MCCV
α,nT =

1

nvTb

∑
s∈R

Ũ′sŨs + ∆α,nT + op(1) +Rn, (11)

where Ũs = Ỹs − X̃sβ.
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(ii) If Mα is in Category II, then

Γ̂MCCV
α,nT =

1

nvTb

∑
s∈R

Ũ′sŨs +
kασ

2

ncT
+ op(n

−1
c ). (12)

(iii) It follows that

lim
n→∞

P (M̂cv =M?) = 1. (13)

The proof is given in Appendix A. The above proposition establishes that ifM? is under

consideration, then MCCV with nv/n→ 1 and nc →∞, hereinafter MCCV-Shao, will select

this model with probability tending to one in large samples. SupposeM? is not considered,

however some models that contain it (Category II) are in the set of candidate models. Then

the above proposition implies that the most parsimonious among those models in Category

II will be selected with probability tending to one as n→∞ by the MCCV-Shao procedure.

However, the above does not ensure that if the models considered are all in Category II,

i.e. none of the models considered contain M?, that the most parsimonious model with the

smallest limn→∞∆α,nT will be selected with probability tending to one. We will explore this

issue in the simulation section.

In the absence of homoskedasticity and serial uncorrelatedness, it is well-known that it

is very difficult to formally justify MCCV. We will, however, examine its performance under

weaker conditions in the numerical experiments.

3.2 Generalized Information Criteria

Here we introduce the generalized information criterion (GIC) for this problem. In the

linear fixed effects model, we do not need to specify a parametric family for the errors

to define the estimator. However, it is computationally convenient to use the result that

the linear fixed effects estimator is identical to the conditional maximum likelihood es-

timator under the additional assumption of Gaussian errors, and the conditioning is on

Ȳi =
∑T

t=1 Yit/T , which is a sufficient statistic for the individual fixed effect (Arellano
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2003). To be clear, we do not require the Gaussianity assumption or conditional maxi-

mum likelihood estimator for our theoretical results, but we take advantage of this equiv-

alence with the linear fixed effects estimator for convenience. We will use f(·) to denote

the relevant density function; its precise meaning should be clear from the context. Let

Yi = (Yi1, . . . , YiT )′ and Xi,α = (Xi1,α, . . . , XiT,α), the ith contribution to the conditional

log-likelihood forMα is given by log
(
f(Yi|Xi,α, ai,α, Ȳi; βα, σ

2
α)
)

= log
(
f(Ỹi|X̃i,α; βα, σ

2
α)
)
∝

−(T − 1) log(σ2
α)−

∑T
t=1

(
Ỹit − X̃ ′it,αβα

)2

/σ2
α. The log-likelihood function is hence given by

`αnT (βα, σ
2
α) = −n(T − 1) log(σ2

α)−

∑n
i=1

∑T
t=1

(
Ỹit − X̃ ′it,αβα

)2

σ2
α

. (14)

In the following, we will work with the conditional profile likelihood function

`αnT (βα, σ̂
2
α(βα)) ∝ −n(T − 1) log

(
σ̂2
α(βα)

)
,

where

σ̂2
α(βα) =

1

n(T − 1)

n∑
i=1

T∑
t=1

(Ỹit − X̃ ′it,αβα)2 (15)

is the constrained maximum likelihood estimator for σ2
α given a fixed value of βα. Here-

inafter, we let ˆ̀
nT ≡ `αnT (β̂α, σ̂

2
α(β̂α)) = −n(T − 1) log(σ̂2

α(β̂α)), where β̂α = arg maxβ∈B `
α
nT

(βα, σ̂
2(βα)).

The generalized information criterion (GIC) is given by the following

GICα,λnT = ˆ̀α
nT − λnTkα. (16)

The term λnT penalizes model dimension. The choice of λnT = 2 corresponds to the AIC,

whereas the choice λnT = log(nT ) corresponds to the BIC. One of the attractive features of

information criteria is that we can formally justify their behavior under heteroskedasticity,

spatial and/or time series dependence by viewing them as a misspecfication of the above

log-likelihood. Since we will deal with misspecification in this section, we introduce another

definition, which is pseudo-consistency of a model selection procedure following Sin and

White (1996).
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Definition 2. (Pseudo-Consistency of Model Selection) Let M = {Mα}Aα=1 and M? is not

nested inMα for any α = 1, . . . , A. Then a model selection criterion C is said to be pseudo-

consistent if limn→∞ P (M̂C =MP) = 1, where M̂C is the model selected by criterion C and

MP is the most parsimonious model with the smallest Kullback-Leibler divergence from the

true data-generating distribution among all models in M.

Using previous results on the behavior of the quasi-log-likelihood ratio statistic (Sin and

White 1996; Vuong 1989), we can establish conditions for GIC’s consistency and pseudo-

consistency. Without loss of generality, consider the choice between two models Mα and

Mγ. Assume kα < kγ. Let LRα,γ
nT = ˆ̀α

nT − ˆ̀γ
nT . Further, write M̂λnT to denote the model

that minimizes the GIC given λnT ,

P (M̂λnT =Mα) = P (GICα,λnT > GICα,λnT )) = P (LRα,γ
nT > λnT (kα − kγ)) ,

where LRα,γ
nT = ˆ̀α

nT − ˆ̀γ
nT . Vuong (1989) establishes that the rate of convergence of the

quasi-likelihood ratio statistic under the null hypothesis differs depending on whether the

conditional densities under Mα and Mγ agree at the pseudo-true parameter values or not.

In our setting, this is determined by whether the predicted values of the outcome at the

pseudo-true parameters of the two models differ or coincide. The following proposition

formally states how this applies to our setting. First, we impose a high-level condition for

the result.

Condition 2. (Joint Asymptotic Normality of Estimators)

√
n

 β̂α − β∗α
β̂γ − β∗γ

 d→ N(0,Σ), n→∞.

Here the mean of the multivariate normal is a (kα+kγ)×1 zero vector, and Σ is a (kα+kγ)×

(kα + kγ) matrix. Primitive conditions that satisfy the above condition include appropriate

assumptions on dependence and moments of the outcome and regressors that ensure the

existence of laws of large numbers as well as central limit theorems.
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The following proposition gives sufficient conditions for GICλnT to deliver (pseudo-) con-

sistent model selection in our problem when considering three possible cases with two models.

The first two cases are from Vuong (1989, Theorem 3.3) when both models are equal in terms

of Kullback-Leibler divergence from the true data-generating distribution. In both cases, a

(pseudo-) consistent GIC should select the more parsimonious model. The third case is

when one model is strictly better in terms of Kullback-Leibler divergence, in which case this

model should be chosen by a (pseudo-) consistent GIC. Recall that xω,α is a realization of

Xit,α given a particular realization of Wit. Let x̃ {ωt}Tt=1,α
≡ {x̃ωt,α}Tt=1 denote the within-

demeaned version of x {ωt}Tt=1,α
= {xωt,α}Tt=1 given T realizations of Wit, i.e. {ωt}Tt=1. Let

f(Ỹi|X̃i,α; β∗α) = f(Ỹi|X̃i,α; β∗α, σ
∗
α(β∗α)), where σ∗α(β∗α) = plimn→∞ σ̂α(β∗α). Following Vuong

(1989), E0[.] denotes the expectation with respect to the true joint distribution of Yi and

Wi.

Proposition 2. Assume Condition 2 holds. The following statements hold as n→∞.

1. Suppose E0[log(f(Ỹi|X̃i,α; β∗α))] = E0[log(f(Ỹi|X̃i,γ; β
∗
γ))] and f(.|x̃.,α; β∗α) = f(.|x̃.,γ; β∗γ)

hold. Then

P (M̂λnT =Mα) = P (GICα,λnT > GICγ,λnT ) = P (LRα,γ
n > λnT (kα − kγ))→ 1,

if λnT →∞.

2. Suppose E0[log(f(Ỹi|X̃i,α; β∗α))] = E0[log(f(Ỹi|X̃i,γ; β
∗
γ))] and f(.|x̃.,α; β∗α) 6= f(.|x̃.,γ; β∗γ)

hold. Then

P (M̂λnT =Mα) = (GICα,λnT > GICγ,λnT ) = P

(
1√
nT

LRα,γ
nT >

λnT√
nT

(kα − kγ)
)
→ 1,

if λnT/
√
nT →∞.

3. Suppose, without loss of generality, that E0[log(f(Ỹi|X̃i,α; β∗α))] > E0[log(f(Ỹi|X̃i,γ; β
∗
γ))]

holds. Then

P (M̂λnT =Mα) = P (GICα,λnT > GICγ,λnT ) = P

(
1

nT
LRα,γnT >

λnT
nT

(kα − kγ)

)
→ 1,

if λnT/(nT )→ 0.
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The proof of the above proposition is immediate from Theorem 3.3 in Vuong (1989).

The result is a special case of what has been shown in Sin and White (1996) and Hong

and Preston (2012). The above lemma shows that for GIC to be (pseudo-) consistent in all

cases, then λnT has to fulfill three conditions as n → ∞: (a) λnT → ∞, (b) λnT/
√
nT →

∞, (c) λnT/(nT ) → 0. These conditions are satisfied for λnT =
√
nT log(log(nT )) or

λnT =
√
nT log(nT ) proposed in Sin and White (1996). However, BICα = GICα,log(nT )

only satisfies (a) and (c), but not (b), which is required for consistency of model selection in

Case 2. This pseudo-inconsistency of BIC occurs when f(.|x̃ .,α; β∗α) 6= f(.|x̃ .,γ; β∗γ), which is

determined by the inequality of the predicted values at the pseudo-true parameters.

In the following section, we demonstrate that if the models considered contain the true

DGP, then the predicted values at the pseudo-true parameters are equal givenWi and hence

we expect BIC to be consistent. However, if model selection is conducted among models

that do not contain M?, i.e. all the models under consideration are misspecified, then this

issue may occur and BIC may therefore be pseudo-inconsistent.

3.2.1 Predicted Values at the Pseudo-True Parameters

Let Ỹ ∗it,α(Wi) ≡ X̃ ′it,αβ
∗
α denote the within-demeaned predicted value of the outcome for

individual i in period t given Wi using the pseudo-true parameter vector of Mα. Consider

two models,Mα andMγ where both models containM?, i.e. X̃it,? = R?,αX̃it,α = R?,γX̃it,γ.

By the results above – recall that we established in (8) that β∗α = R′?,αβ?,o forMα whenM?

is nested in it – it follows that

Ỹ ∗it,α(Wi) = X̃ ′it,αβ
∗
α = X̃ ′it,αR

′
?,αβ?,o = X̃ ′it,?β?,o,

Ỹ ∗it,γ(Wi) = X̃ ′it,γβ
∗
γ = X̃ ′it,γR

′
?,γβ?,o = X̃ ′it,?β?,o. (17)

Hence, in this case, both models yield identical predictions given Wi using their respective

pseudo-true parameter vectors. This result holds regardless of the relationship between the

two models as long as M? is nested in both of them.

Note that if Mα is nested in Mγ, but the DGP is not contained in either model, they

may still have different predictions using their respective pseudo-true parameter vectors. To
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see this, consider

Ỹ ∗it,γ(Wi) = X̃ ′it,γβ
∗
γ = X̃ ′it,γ

(
E[X̃it,γX̃

′
it,γ]
)−1

E[X̃it,γX
′
it,?]β?,o , (18)

Ỹ ∗it,α(Wi) = X̃ ′it,αβ
∗
α = X̃ ′it,α

(
E[X̃it,αX̃

′
it,α]
)−1

E[X̃it,αX̃
′
it,?]β?,o

= X̃ ′it,γR
′
α,γ

(
Rα,γE[X̃it,γX̃

′
it,γ]R

′
α,γ

)−1

Rα,γE[X̃it,γX̃
′
it,?]β?,o . (19)

Note that Ỹ ∗it,γ(Wi) = Y ∗it,α(Wi) is true if

R′α,γ

(
Rα,γE[X̃it,γX̃

′
it,γ]R

′
α,γ

)−1

Rα,γ =
(
E[X̃it,γX̃

′
it,γ]
)−1

, (20)

which would hold in general if Rα,γ were symmetric and invertible. However, by definition

it is not a square matrix.

We now consider simple example to illustrate this point. Suppose thatMα is the annual

mean model andMγ is the quarterly mean model. Then E[X̃it,γX̃
′
it,γ] is the within variance-

covariance matrix of the quarterly means, and E[X̃2
it,α] is the within-variance of the annual

mean, which is a weighted average of the quarterly means. Clearly, the “variability” is

not in general the same for the higher- and lower-frequency mean, unless we impose some

restrictive assumptions. For instance, if we require that the within-variance is the same for

all quarterly means and that there is no within-covariance between the quarterly means, then

E[X̃it,γX̃
′
it,γ] = E[X̃2

it,α]Ikγ , where E[X̃2
it,α] > 0. This would imply that the within-variance

of summer and winter average temperatures are the same and that there is no inter-seasonal

correlation in temperature. These are unrealistic assumptions that we entertain to illustrate

our point. In this example, (20) simplifies to

R′α,γ
(
Rα,γR

′
α,γ

)−1
Rα,γ = Ikγ ,

1∑4
j=1 |Qj|2/H2

R′α,γRα,γ = Ikγ . (21)

The above equality is trivially fulfilled if Rα,γ is proportional to the identity matrix, which

would imply that both models are identical. But this is not true in this simple example. If we

further simplify the problem by assuming that |Qj| = H/4 for j = 1, . . . , 4, then Rα,γ = 1
4
1′k,

where 1k is a k × 1 vector with all elements equal to one. It follows that the above equality
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clearly does not hold, since its left-hand side would simplify to 1
4
1k1

′
k. Hence, even in this

simple example, it is difficult to show that it is possible to obtain identical predictions of the

outcome variable given Wi when considering two models that do not nest M?.

We use the above insights to inform our simulation design.

4 Simulation Study

In this section, we first compare the finite-sample performance of the MCCV and GICs in a

baseline design that exhibits a high signal-to-noise ratio. Then, we examine the performance

of the model selection criteria for different signal-to-noise ratios.

4.1 Baseline Results: Comparing MCCV and Generalized Information Criteria

Here we illustrate the aforementioned theoretical results using a simple simulation study. To

simplify illustration, we only present the simulation results for selecting between the annual

mean (A), quarterly mean (Q) and quadratic in annual mean (QinA) models. We evaluate

the behavior of the model selection criteria for selecting among a broader set of models

including bi-annual mean, monthly mean, and temperature bin models in the supplementary

appendix.

For each of the DGPs we consider, we use a random sample of counties from the NCDC

temperature dataset for the years 1968-1972 as Wit for i = 1, . . . , n and t = 1, . . . , T , where

T = 5. For each simulation replication, we generate ai|Wi1,Wi2, . . . ,Wi5
i.i.d.∼ N(0.5W̄i, 1),

where W̄i =
∑T

t=1

∑H
τ=1Witτ/(TH). The idiosyncratic shocks uit are generated as a bi-

variate mixture normal that is heteroskedastic and serially correlated as follows. Let ui =

(ui1, . . . , uiT ) = ε1i +ε2i , where ε1i |Wi1, . . . ,Wi5, ai
i.i.d.∼ N(−0.5,Σ1) and ε2i |Wi1, . . . ,Wi5, ai

i.i.d.∼
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N(0.5,Σ2), with

Σ1 =



1 0.5 0.1 0 0

0.5 1 0.5 0.1 0

0.1 0.5 1 0.5 0.1

0 0.1 0.5 1 0.5

0 0 0.1 0.5 1


, Σ2 =



1 0.5 0.1 0 0

0.5 0.75 0.5 0.1 0

0.1 0.5 1 0.5 0.1

0 0.1 0.5 0.75 0.5

0 0 0.1 0.5 1


. (22)

The following response functions generate Yit for the three DGPs we consider:

• Annual Mean (A): Yit = W̄it + ai,α + uit,α,

• Quadratic in Annual Mean (QinA): Yit = 0.2W̄it − 0.05W̄ 2
it + ai,δ + uit,δ,

• Quarterly Mean (Q): Yit = −0.25W̄Q1

it + 0.75W̄Q3

it + ai,γ + uit,γ.

Given the importance of the pseudo-true parameter values as well as the MSE evaluated

at these values in our theoretical analysis, we simulate these quantities for models A, Q,

and QinA using 2000 simulation replications using the sample of all counties in our dataset

(n = 3078) to ensure that our simulated quantities are as close as possible to their population

analogues. Table 1 presents the simulation mean of coefficients (β̄α) and MSE estimated

using β̄α for our entire sample, i.e. MSE(β̄α) =
∑n

i=1

∑T
t=1(ỹit− x̃′it,αβ̄α)2/(nT ), for all three

models we consider when the DGP is A, Q, and QinA, respectively. Note that when QinA is

the DGP, the annual mean (A) and quarterly mean (Q) models yield very similar MSE at β̄α.

Similarly, when Q is the DGP, the MSE at β̄α is similar for models A and QinA. However,

the predicted values of the outcome given the models’ pseudo-true parameter values are quite

different. Hence, our theoretical results would predict that when selecting between A and Q

(A and QinA) when the DGP is QinA (Q), we expect BIC to be pseudo-inconsistent, i.e. it

will choose the larger model among the two models under consideration.

For each DGP, we examine the performance of the following model selection criteria:
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Table 1: Simulation Mean of Model Coefficients and Mean Squared Error

DGP: A QinA Q

Mα Xk
it,α β̄kα MSE(β̄α) β̄kα MSE(β̄α) β̄kα MSE(β̄α)

A A 1.000
}

0.59 -5.218
}

1.05 0.112
}

1.56

QinA A 1.002
}

0.59
0.202

}
0.59

0.545
}

1.56
A2 0.000 -0.050 -0.004

Q Q1 0.249
0.59

-1.314
1.05

-0.250
0.59

Q2 0.246 -1.206 0.000

Q3 0.248 -1.307 0.750

Q4 0.249 -1.305 0.000

Notes: The table presents β̄kα, the simulation mean for each estimated ele-

ment of the parameter vector in the models considered across 2000 simula-

tion replications for each DGP (A, QinA and Q). In this design, n = 3078

(the total number of counties in the dataset) and T = 5. We use β̄kα to cal-

culate the mean squared error MSE(β̄α) =
∑n
i=1

∑T
t=1(ỹit−x̃′it,αβ̄α)2/(nT ).

• MCCV (nc/n)

- nc/n = p = 0.75 (MCCV with fixed training to full sample ratios, hereinafter

MCCV-p),

- nc = n−1/4 (MCCV with fixed training to full sample ratios, hereinafter MCCV-

Shao);

• GICα,λnT = −n(T − 1) log(σ̂2
α)− λnTkα, where σ̂2 =

∑n
i=1

∑T
t=1(ỹit − x̃′it,αβ̂α)2/(nT ),

- λnT = 2 (AIC),

- λnT = log(nT ) (BIC),

- λnT =
√
nT log(log(nT )) (SW1),

- λnT =
√
nT log(nT ) (SW2).

We use the same random sample of n counties from the full NCDC sample of 3,074

counties and use the temperature data for these counties between 1968-72 as our high-

frequency regressor {Wi}ni=1 in all the simulation designs. The outcome variable is generated
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using the DGP in question. All regression models are implemented on the generated data and

the six model selection criteria are calculated for each model. The simulation probabilities

(proportions) of selecting a particular model for each combination are computed using 500

simulation replications.

Figure 1: Simulation Results for the Model Selection Criteria

Notes: For each DGP (indicated in the first row), the figure plots the simulation probability

(proportion) that a particular model (A, Q or QinA) is chosen by a model selection criterion in

a given model selection problem. The model selection problems we consider are listed in the first

column. The model selection criteria are given in the second column. For n = 500, 3000, the

number of simulation replications is 500.

For each DGP we consider, Figure 1 shows the model selection simulation probability

for three different model selection problems when n = 500, 3000: (i) A,Q, (ii) A,QinA,

and (iii) A,Q,QinA. When all models are considered as in (iii), AIC and MCCV-p are not

model selection consistent as our theoretical results predict; they specifically select overfit

models, such as Q or QinA, even whenM? (corresponding to A) is among the models under

consideration. In this setting, MCCV-Shao, BIC, SW1 and SW2 select the most parsimonious

correctly specified model with simulation probability very close or equal to 1.

To study the pseudo-consistency of the model selection criteria, we examine two de-

24



signs: (1) choose between A and QinA where DGP= Q, (2) choose between A and Q

where DGP= QinA. Since in both cases the two models under consideration have similar

MSE(β̄α), A should be chosen in both cases. BIC and MCCV-Shao choose the larger model,

QinA in (1) and Q in (2), with probability almost equal to 1 when n = 3000, whereas

SW1 and SW2 choose A. Hence, the former criteria exhibit performance consistent with

pseudo-inconsistency in model selection. The BIC’s pseudo-inconsistency is predicted by

our theoretical results. According to Shao (1997), MCCV-Shao and BIC are asymptotically

equivalent, hence it is not surprising that they both behave similarly in the simulations.

4.2 Signal-to-noise Ratio and Model Selection Consistency

Given the potential sensitivity of the finite-sample performance of model selection procedure

to the signal-to-noise ratio in the DGP,7 we examine the behavior of the model selection

criteria when we vary the signal-to-noise ratio in our design. To do so, for a given DGP,

M? in the form of Yit = X ′it,?β? + αi + vit. To generate vit, we first generate uit as in our

baseline design and obtain X̃it and ũit which are demeaned versions of Xit and uit. We then

construct the rescaled error term vit such that its demeaned version ṽit satisfies

ṽit =

√
1

ρ
· V ar(X̃it)

V ar(ũit)
× ũit,

where ρ is the value of SNR we use in a given design.

Figure 2 presents the simulation probability of selecting each model under consideration

for two model selection problems from the baseline design: (1) the full set of nested models,

(2) the full set of possibly non-nested models. Since we vary the signal-to-noise ratio (SNR)

between 0.1 and 10, we also include the null model (with no temperature variable) for the

two model selection problems we consider. To simplify illustration, we only include results

for AIC, BIC, SW1 and SW2, omitting the MCCV procedures.

7For instance, Hastie et al. (2020) compare the finite-sample performance of best subset selection, LASSO

and forward step-wise regression via simulations and illustrate how their relative performance depends on

the SNR.
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Figure 2: Simulation Results for the Model Selection Criteria under Different SNR

Panel A: Selection among Nested Models

Panel B: Selection among Non-nested Models

Notes: For each DGP (indicated on the right), the figure plots the simulation probability (proportion) that a

particular model (indicated on the top) is chosen by a model selection criterion in a given model selection problem

under a specific signal-to-noise ratio (SNR). Four information criteria are considered: AIC, BIC, SW1, and SW2.

The scale of the horizontal axis is log-transformed.
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Overall, the results for high SNRs are consistent with our baseline results. For low

SNRs, however, we find that SW1 and SW2 can underfit, even if the true DGP is under

consideration. For instance, in the second row of Panel B in Figure 2, for SNRs of up to 1.0

or 2.5, the SW criteria tend to select the annual mean model with simulation probability

equal or close to one, whereas the AIC and BIC choose the true DGP with high probability.

In the third row of Panel B in Figure 2, the SW criteria select the null model with probability

close to one for very low SNRs (0.1-0.2).

A practical implication of these simulation results is that the SNR is an important quan-

tity to report when interpreting the results of model selection criteria. In addition, they

suggest that rather than reporting the results of a single model selection criterion chosen

by the empirical researcher as in current empirical practice, several model selection criteria

should be reported to aid the interpretation of their results as we illustrate in our applica-

tions.

5 Empirical Applications

The simulation results suggest that the performance of different model selection criteria

varies with the relative predominance of signal versus noise in the model. In this section,

we provide two empirical applications with starkly different levels of signal-to-noise ratios.

The first application revisits the relationship between crop yields and temperature which

exhibits a high signal-to-noise ratio, whereas the second application re-examines the GDP-

temperature relationship which suffers from a low signal-to-noise ratio.

5.1 Temperature and Crop Yields

The agronomic literature has documented that the accumulation of heat is only beneficial

to crop growth over certain ranges of the temperature, and becomes detrimental otherwise

(Ritchie and Nesmith 1991). Previous statistical analyses also find evidence of nonlinearity in

crop yield response to temperature under different estimation specifications (e.g., Burke and

Emerick 2016; Gammans et al. 2017; Schlenker and Roberts 2009). However, the qualitative
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similarity of nonlinearity does not diminish the importance of exploring the quantitative

difference between alternative specifications, especially considering that nuances in the esti-

mation results could be substantially magnified when it comes to projecting future climate

impacts.

In this empirical application, we consider different specifications of temperature variables

in the following model,

log(Yit) = X ′it,αβα + θ1Pit + θ2P
2
it + δ1,st+ δ2,st

2 + ai + εit,

where Yit represents corn yields (bushels/acre) in county i in crop year t. The regressors

Xit,α = µα(Tit) represent temperature variables constructed based on daily average tempera-

ture of the growing season Tit ≡ {Titτ}Hτ=1.8 Pit represents growing-season total precipitation,

δ1,s and δ2,s characterize state-level quadratic trends, αi represents county fixed effect and

εit is the error term.

We consider the following set of temperature specifications: (a) reference model with

no temperature variables, (b) monthly average temperatures, (c) 1◦C daily temperature

bins, (d) 3◦C step function, (e) degree days in the fashion of Schlenker et al. (2006) (SHF

degree days, hereafter), (f) piecewise linear function with one knot, and (g) piecewise linear

function with two knots. Models (a)-(f) are model candidates considered in Schlenker and

Roberts (2009), and model (g) is a more flexible variant of (f). All the models above only

consider growing-season temperatures. The last two piecewise linear specifications rely on

knots selected by minimizing MSE.9 Although the specifications considered here are not

exhaustive, we believe they are sufficiently rich to illustrate the differentiated performances

among different model selection criteria.

We obtain county-level corn yields covering 1950-2015 from USDA Quick Stats. The

source of historical weather information is the PRISM dataset, which provides spatially

gridded daily data at 4km-by-4km resolution. We follow the data managing procedure in

8Previous studies have shown the importance of considering within-season temperature variation in mod-

eling the response of crop yields since the seminal work in Schlenker et al. (2006) and Schlenker and Roberts

(2009).
9We present the smallest ten MSEs in Appendix Table A1.

28



Schlenker and Roberts (2009) and obtain county-level daily temperature and precipitation

over 1950-2015. Based on the merged county-level data, we first conduct estimation using an

unbalanced panel of all available observations covering 1950-2015. The unbalanced sample

contains 2,278 counties with a total of 120,995 observations. The estimation results, as

reported in Appendix Table A2, are in line with previous findings. We also report signal-to-

noise ratios of each estimation model, and these ratios are mostly close to 0.40.10

Conducting model selection on the specifications considered, we find that AIC and BIC

select the 3◦C step function, which is also the preferred specification in Schlenker and Roberts

(2009). The two cross-validation procedures and SW1 select the two-knot piecewise function

(knots at 24◦C and 26◦C), and SW2 selects the one-knot piecewise linear function (knot at

29◦C).

In panel A of Figure 3, we plot the three estimated response functions chosen by different

model selection criteria considered. Along with the estimates, we plot 95% confidence in-

tervals constructed by applying the delta method on state-clustered robust standard errors.

The general patterns are similar across the three response functions. The 3◦C step function

is most flexible as it picks up potential nonlinearities in every 3◦C. A clear downside of the

3◦C step function is its lower precision compared with the piecewise functions, especially for

estimates of the high temperatures. Comparing between the two piecewise functions, the

two-knot function exhibits a peak positive effect over 24-26◦C that is not emphasized in the

one-knot function. On high temperature effects, the two piecewise functions deliver similar

results but the one-knot function is more precisely estimated. Furthermore, the three models

deliver very similar climate change projections as illustrated in Figure 4.

We repeat this empirical application with only using a balanced panel of counties that

always planted corn during the sample period. The balanced panel contains 679 counties in

the core region of the corn belt, with a total of 44,818 observations. The estimation results,

presented in Appendix Table A3, are similar to those obtained using the unbalanced panel,

with generally higher signal-to-noise ratios. Our exercise of the model selection indicates

10We consider all weather variables as the signal component, and we obtain signal-to-noise ratios by

projecting out all the time trends and fixed effects.
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A. Unbalanced Panel B. Balanced Panel

Figure 3: Yield Response to Growing-season Temperature: Selected Models

Notes: The solid lines represent point estimates of the yield response functions, and the shallow bands are

95% confidence intervals constructed by applying the delta method on state-clustered standard errors.

A. 3◦C step function B. One-knot spline C. Two-knots spline

Figure 4: Yield Impacts Projected under Future Climate

Notes: The county-level log changes in corn yields are obtained by applying different yield-response functions

to the climate of 2050 projected under HadCM3-B1. The yield-response functions considered here are the

three models selected by the different model selection criteria in the unbalanced case.
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that both AIC and BIC still select the 3◦C step function, while the two SW criteria and

the two MCCV procedures all choose the one-knot piecewise function, in which the knot is

endogenously determined at 30◦C with a minimized MSE. As shown in panel B of Figure 3,

although the 3◦C step function and the one-knot piecewise function display a similar pattern

in the estimated effects, the piecewise function is much more precisely estimated.

Table 2: Model Selection Criteria for the Yield-Temperature Relationship
Model R̂2 SNR AIC BIC MCCV-p MCCV-Shao SW1 SW2

Unbalanced

a. no temperature var 9.18% 10.11% -333091 -332490 0.07126 0.07369 -299391 -259436

b. monthly avg temp 20.19% 25.29% -348417 -347757 0.06443 0.06752 -311455 -267634

c. 1◦C daily temp bin 26.88% 36.76% -358753 -357792 0.05979 0.06218 -304941 -241143

d. 3◦C step function 29.34% 41.52% -362864 -362127 0.05768 0.05984 -321554 -272577

e. SHF degree days 27.60% 38.13% -361052 -360421 0.05795 0.05990 -325721 -283833

f. Piecewise: 0-29, 29+ 28.99% 40.82% -361251 -360630 0.05778 0.05954 -326463 -285220

g. Piecewise: 0-24, 24-26, 26+ 28.24% 39.35% -362102 -361471 0.05744 0.05923 -326771 -284883

Balanced

a. no temperature var 10.25% 11.42% -138208 -137895 0.04784 0.04998 -126545 -113340

b. monthly avg temp 23.19% 30.19% -145067 -144702 0.04245 0.04585 -131460 -116054

c. 1◦C daily temp bin 36.18% 56.69% -153185 -152558 0.03530 0.03797 -129858 -103447

d. 3◦C step function 39.27% 64.66% -155416 -154980 0.03322 0.03549 -139217 -120876

e. SHF degree days 38.25% 61.94% -153302 -152962 0.03583 0.03787 -140667 -126361

f. Piecewise: 0-30, 30+ 38.37% 62.25% -154706 -154375 0.03310 0.03486 -142395 -128455

g. Piecewise: 0-29, 29-33, 33+ 36.26% 56.88% -154789 -154449 0.03315 0.03500 -142153 -127848

Notes: R̂2 and SNR are calculated based on the following regression: ̂log(yit) = X̂ ′it,αβα + θ1P̂it + θ2P̂ 2
it + ε̂it, where the

hatted variables are obtained by projecting the original variables out of county and year fixed effects and state quadratic

trends. The SNR is formed by dividing the model sum of squares by the residual sum of squares. The columns for

MCCV-p and MCCV-Shao presents MSE for cross-validation with 1,000 simulations.

Estimating temperature effects on crop yields corresponds to a case with relatively high

predominance of signal in the empirical literature on climate change impact estimation. This

statistical high signal is supported by the agronomic knowledge that the varying heat over a

growing season constitutes a critical input for crop growth. As we show through simulations,

the SW criteria more likely deliver consistent model selection results when the signal-to-noise

ratio is relatively high. Reflected in our crop yield application, the SW criteria select the

more parsimonious piece-wise linear functions. From an empirical perspective, they out-

perform the step functions chosen by AIC and BIC, since the piece-wise linear functions
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have successfully characterized the well-established nonliearity in temperature response with

relatively higher precision.

5.2 Temperature and GDP

A different context that features relatively low signal-to-noise ratios is to explain temperature

impacts on growth with country-level macro panel data. Using data of 125 countries over

1950-2005, Dell et al. (2012) document that rising temperatures reduce economic growth

in poor countries through influencing agricultural and industrial outputs as well as political

stability, but rich countries are found to be more immune to higher temperatures. In contrast,

using similar data, Burke et al. (2015) (BHM, hereafter) show that the temperature-GDP

relationship follows a concave quadratic function, and they argue that the temperature effect

on economic production is nonlinear globally. Results in BHM imply that both rich and

poor countries will experience substantial economic losses under future climate. The model

uncertainty embedded in these analyses would directly influence the policy prescriptions for

governments to deal with climate change (Newell et al. 2021).

In this section, we formally evaluate the model selection problem using BHM’s origi-

nal data. The source data contain country-level per capita GDP over 1960-2012 from the

World Bank’s World Development Indicators, and annual temperature and precipitation

over 1900-2010 aggregated to the country level from 0.5 degree gridded monthly data from

the University of Delaware reconstruction. With missing values, the merged country-level

dataset is an unbalanced panel of 166 countries that covers 1960-2010.

Focusing on the response function of temperature, we maintain BHM’s regression speci-

fication of terms other than temperature. The panel fixed effect estimation is expressed as

follows.

log(Yit) = h(Tit) + θ1Pit + θ2P
2
it + δ1,it+ δ2,it

2 + ai + µt + εit. (23)

Yit represents per capita GDP in country i in year t. h(Tit) denotes an unknown function of

annual temperature Tit. The role of precipitation is characterized as a quadratic function of

annual precipitation Pit. Country-level smooth trends are captured by δ1,it + δ2,it
2, and ai
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and µt are country and year fixed effects, respectively. εit is the error term.

We consider the following set of specifications of annual temperature: (a) no temperature

variable at all, (b) simple average, (c) quadratic, (d) cubic, (e) fourth order, (f) linear spline

with knots at every 5◦C from 0◦C to 25◦C, (g) linear spline with knots at every 3◦C from 0◦C

to 27◦C. (h) linear spline with one knot determined by minimizing MSE. These models follow

the model candidates of higher-order polynomials and multi-knot splines in the robustness

evaluation in Burke et al. (2015).11 We then evaluate the performance of different models

with the four GICs (AIC, BIC, SW1, SW2) and the two cross-validation procedures (MCCV-p

and MCCV-Shao, both with 1,000 simulations).

Following the practices in BHM, we first conduct the regressions above using the un-

balanced panel that contains 166 countries with a total of 6,584 country-year paired ob-

servations. In the one-knot spline specification, a knot at 16◦C is selected as it delivers the

minimum MSE (see Appendix Table A5). For all the specifications, we report estimates with

country-clustered robust standard errors in Appendix Table A4. To illustrate the results,

we plot the estimated temperature functions in Figure 5 using the point estimates obtained

from the regressions. Over the support of observed annual temperatures, the quadratic, cu-

bic, and splines specifications yield qualitatively similar results: economic growth increases

with temperature in cool areas but decreases with temperature in hot areas. The fourth-

order model overshoots when temperature becomes higher than 15◦C, and the simple average

model suggests that temperature effect is close to zero.

Next, we examine the model selection criteria in Table 3. For the full (unbalanced)

sample, AIC selects the most flexible 3◦C segment spline model. BIC and the two MCCV

procedures all select the one-knot linear spline model. The estimates of this specification

suggest that a 1◦C warming below 16◦C is associated with a 0.63% increase in GDP, and a

1◦C warming above 16◦C is associated with a 1.16% reduction in GDP. These two models

exhibit very similar response functions, see the left panel in Figure 5. When turning to the

SW criteria, we find that they both select the reference model with no temperature variables.

11We use linear splines instead of restricted cubic splines due to degree-of-freedom concerns, and we adapt

the spline model to endogenously selecting the knot in model (h).
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Figure 5: Estimated Functions of Temperature-GDP Relationship: Point Estimates

Notes: The upper panels plot point estimates of the temperature-GDP relationship obtained from the un-

balanced and balanced samples, respectively. The lower panels plot the distributions of annual temperatures

in the unbalanced and balanced samples, respectively. Models 1-7 in the figure are (1) simple average, (2)

quadratic, (3) cubic, (4) fourth-order, (5) 5◦C segment spline, (6) 3◦C segment spline, and (7) one-knot

spline with the knot selected by minimizing MSE.

For the balanced sample, the models selected by the different criteria reflect some of the

patterns in our simulation results. Our simulations have shown that the SW criteria tend

to underfit models when signal-to-noise ratios are low. Indeed, as presented in Table 3, all

the models for estimating GDP feature signal-to-noise ratios below 1%, far below those in

the crop yields application. In this case, our simulations suggest that the models selected

by other information criteria like BIC may better approximate the underlying relationship.

The nonlinear relationship characterized by the one-knot piecewise function (or the 3◦C step

function) also qualitatively resembles the quadratic function favored by BHM.
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A. Unbalanced B. Balanced

Figure 6: Estimated Smoothing Splines: Temperature and GDP

Notes: The red curves are fitted smoothing splines, and the round circles are overlaid observations. For

illustration purpose, we restrict the presentation of the observations to those with ln(GDP per captia) in

between -0.10 and 0.10.
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Since many countries have a substantial amount of missing values, we examine the results

for the balanced panel of 86 countries with a total of 4300 observations. The estimation

results are reported in Appendix Table A6, and the temperature functions recovered from

the point estimates are plotted in the right panel of Figure 5. Because the balanced sample

only contains very few observations with temperature below 0◦C, we suppress the spline

segment below 0◦C in estimating the 5◦C and 3◦C segment splines. Most of the results for

the balanced sample are qualitatively similar to those obtained with the unbalanced sample.

However, an estimated pattern that sharply contrasts with the unbalanced results is the one-

knot spline function. When evaluated based on the balanced sample, the knot minimizes

MSE becomes 27◦C, and the estimated temperature effect is close to zero before 27◦C and

drops substantially beyond 27◦C.12 This is the model that is selected by AIC. BIC selects the

quadratic model (the preferred specification in BHM). The two MCCV procedures select the

most flexible 3◦C segment spline model. Unlike the results using the unbalanced sample, the

models selected by AIC, BIC and the MCCV procedures do not deliver qualitatively similar

response functions, see the right panel of Figure 5. Specifically, the one-knot spline function

suggests that only temperature increases above 27◦C adversely affect GDP, while the 3◦C

segment spline and the quadratic model yield an inverted U-shaped response function. As

for the SW criteria, both select the reference model with no temperature variables.

Since the functional forms considered are not motivated by economic theory, we further

turn to a fully data-driven approach to detect if it delivers estimated patterns that resemble

certain functional forms we examined above. Specifically, we model h(Tit) in equation (23) as

a smoothing spline.13 Figure 6 shows the estimated splines based on the unbalanced and the

balanced samples, respectively. In the unbalanced case, the spline is similar to a quadratic

12We note that for both the unbalanced and the balanced cases, when plotting the spline function over the

support of observed annual temperatures, it shows that a large portion of the 95% confidence band overlaps

with the zero line (see Appendix Figure A1). These 95% confidence intervals are obtained by applying the

delta method using country-clustered robust standard errors.
13We set up the estimation as a general additive model (GAM) using R, and implement the estimation

using a cubic spline basis given their favorable theoretical properties (Wood 2017).
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Table 3: Model Selection Criteria in the Temperature-GDP Relationship
Model R̂2 SNR AIC BIC MCCV-p MCCV-Shao SW1 SW2

Unbalanced sample:

a. none 0.09% 0.09% -37166 -34558 0.00542 0.00690 8007 54457

b. simple avg 0.09% 0.09% -37164 -34549 0.00543 0.00690 8126 54698

c. quadratic 0.46% 0.46% -37186 -34564 0.00526 0.00674 8222 54915

d. cubic 0.47% 0.47% -37184 -34556 0.00527 0.00676 8341 55155

e. 4th order 0.47% 0.48% -37183 -34547 0.00529 0.00679 8460 55395

f. 5◦C segment spline 0.58% 0.58% -37183 -34527 0.00519 0.00668 8813 56110

g. 3◦C segment spline 0.84% 0.84% -37192 -34509 0.00515 0.00668 9275 57056

h. one-knot spline 0.52% 0.52% -37189 -34568 0.00511 0.00659 8218 54911

Balanced sample:

a. none 0.07% 0.07% -25160 -23747 0.00424 0.00516 -4387 16503

b. simple avg 0.11% 0.11% -25160 -23740 0.00423 0.00513 -4293 16691

c. quadratic 0.41% 0.41% -25172 -23753 0.00416 0.00507 -4306 16678

d. cubic 0.42% 0.43% -25169 -23736 0.00416 0.00508 -4115 17057

e. 4th order 0.44% 0.44% -25167 -23729 0.00417 0.00510 -4020 17246

f. 5◦C segment spline 0.43% 0.43% -25163 -23711 0.00408 0.00501 -3828 17626

g. 3◦C segment spline 0.77% 0.77% -25169 -23692 0.00402 0.00499 -3461 18370

h. one-knot spline 0.54% 0.54% -25176 -23750 0.00424 0.00516 -4215 16863

Notes: R̂2 and SNR are calculated based on the following regression: ̂log(yit) = ĥ(Tit)+θ1P̂it+θ2P̂ 2
it+ ε̂it,

where the hatted variables are obtained by projecting the original variables out of country and year

fixed effects and country quadratic trends. The SNR is formed by dividing the model sum of squares

by the residual sum of squares. The columns for MCCV-p and MCCV-Shao presents MSE for cross-

validation with 1,000 simulations. We italicize the smallest model selection criterion in each column for

the unbalanced and balanced sample, respectively.
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function while the magnitude of the estimates is substantially smaller than that presented

in Figure 5. In the balanced case, the spline is very close to the zero line, despite modest

curvature around 10◦C.

Overall, this application illustrates that, unlike the crop yield example, the GDP-temperature

relationship is sensitive to the sample used for estimation as well as the model selection cri-

terion in question. The sensitivity of the results is not surprising when considering the

magnitude of the signal-to-noise ratio in this application.

6 Conclusion

This paper formalizes the model selection problem faced by applied researchers and policy-

makers interested in examining the climate change impact on outcomes of interest. Condi-

tions for the consistency of Monte Carlo Cross-Validation and generalized information criteria

are derived. An interesting takeaway from this analysis is that, even though all models un-

der consideration are linear in the parameters, the model selection problem in this empirical

literature is a nonlinear model selection problem. The nonlinearity stems from the fact that

all models considered rely on different summary statistics of the underlying high-frequency

regressor. As a result, BIC can be pseudo-inconsistent in this context similar to nonlinear

model selection problems (Hong and Preston 2012; Sin and White 1996). Simulation analysis

of the finite-sample behavior of the model selection criteria points to the importance of the

signal-to-noise ratio. Two empirical applications with starkly different signal-to-noise ratios

illustrate the practical recommendations implied by our results.

This paper is concerned with the behavior of model selection criteria in the context of

climate change impact studies. While it constitutes a first step toward principled model

selection in this important empirical context, there are several interesting directions for

future research. More flexible procedures to estimate the response functions would be a

good substitute to the model selection approach taken in this literature. Allowing for possible

nonlinearities between regressors and fixed effects is another important departure from the

setup in this paper. Finally, providing valid post-selection inference for the aforementioned
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methods constitutes a priority for future work.

A Derivations and Proofs

A.1 MSPE Derivation

Let Z̃ denote “future” values of Ỹ whereas β̂(αα) was estimated using the sample Ỹ and

X̃n,α).

Γ̂α,nT =
1

nT

∥∥∥Z̃− X̃αβ̂α

∥∥∥2

=
1

nT

∥∥∥∥∥∥∥∥Ũz + X̃?β?,o − X̃α

(
X̃′αX̃α

)−1

X̃′α︸ ︷︷ ︸
≡Pα

Ỹ

∥∥∥∥∥∥∥∥
2

=
1

nT

∥∥∥Ũz + (InT − Pα)X̃?β?,o − PαŨ
∥∥∥2

(24)

where Ũz denotes the within-individual demeaned error term of the observations Z̃.

Let Γα,nT denote the expectation of Γ̂α,nT conditional on {Wi}ni=1

Γα,nT =
1

nT
E[Ũ′zŨz|{Wi}ni=1] + E[Ũ′PαŨ|{Wi}ni=1] +

1

nT
β′?,oX̃′?(InT − Pα)X̃?β?,o (25)

The first term on the right hand size of the equality equals E
[∑n

i=1

∑T
t=1 ũ

2
it

]
/nT = E[ũ2

it] =

σ2(T − 1)/T . The second term can be simplified as follows

1

nT
E
[
Ũ′Xα(X̃′αX̃α)−1X̃′αŨ|{Wi}ni=1

]
=

1

nT
tr
(
E
[
ŨŨ′Xα(X̃′αX̃α)−1X̃′α|{Wi}ni=1

])
=

1

nT
σ2tr((In ⊗ (IT − JT/T ))︸ ︷︷ ︸

≡In⊗QT

X̃α(X̃′αX̃α)−1X̃′α) =
1

nT
σ2kα. (26)

where the last equality follows by noting (In⊗QT )X̃α = X̃α as well as properties of the trace.

A.2 Proof of Proposition 1

Proof. The proof is adapted from Shao (1993) to the setting of a fixed effects model with
stochastic high-frequency regressors. Following Shao (1993), we first show the results for
Balanced Incomplete Cross-Validation (BICV) with stochastic regressors, then we extend
the results to MCCV. Let B be a collection of b subsets of {1, . . . , n} that have size nv such
that (i) for each i, 1 ≤ i ≤ n, the same number of subsets of B include it, (ii) for each pair
(i, j) for i, j ∈ {1, . . . , n}, the same number of subsets of B include it. From (3.1) in Shao
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(1993) and the balance property of B, From (3.1) in Shao (1993) and the balance property
of B,

Γ̂BICVα,nT ≥
1

nvTb

∑
s∈B

‖Ỹs − X̃s,αβ̂α‖2 = n−1‖Ỹ− X̃αβ̂α‖2 = (nT )−1Ũ′Ũ + ∆α,nT + op(1) (27)

where the last equality follows from the proof of (3.5) in Shao (1993). (i) in this proposition

follows by letting Rn = Γ̂BICVα,nT − ‖Ỹ− X̃αβ̂α‖2/n.
By Condition 1.3.(iii) with s ∈ B in lieu of s ∈ R, it follows for every s ∈ B,

1

n
X̃′αX̃α −

1

nv
X̃′α,sX̃α,s =

1
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]
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nc + nv
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]
=

1

n
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]
=
nc
n

[
1
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1
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]
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(nc
n

)
(28)

With some further manipulations,(
1
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1

n
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(29)

Hence, together with Condition 1.3.i, the above implies that

(X̃′α,sX̃α,s)
−1 − n

nv
(X̃′αX̃α)−1 = op

(nc
n

)
(X̃′α,sX̃α,s)

−1 (30)

For Pα,s = X̃α,s(X̃′α,sX̃α,s)
−1X̃′α,s,

Pα,s =
n

nv
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(
X̃′αX̃α

)−1
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n

nv
X̃α,s

(
X̃′αX̃α

)−1

X̃′α,s + o
(nc
n

)
X̃α,s(X̃′α,sX̃α,s)

−1X̃′α,s

=
n

nv
Qα,s + op

(nc
n

)
Pα,s (31)

Given that nv/n = O(1), it follows that

Qα,s = Pα,s

(nv
n

+ op

(nc
n

))
(32)
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From the balance property of B,

1

nvTb

∑
s∈B

r′α,sQα,s∇α,s =
1

nvTb

∑
s∈B

∑
i∈s

T∑
t=1

wit,αr
2
it,α =

1

nvTb

(
nvb

n
− nvb

n

nv − 1

n− 1

) n∑
i=1

T∑
t=1

wit,αr
2
it,α

=
1

T

(
1

n
− nv − 1

n(n− 1)

) n∑
i=1

T∑
t=1

wit,αr
2
it,α

where rα,s = Ỹs − X̃α,sβ̂α and rit,α = Ỹit − X̃ ′it,αβ̂α.
By (32) and nv/n→ 1 and nc →∞, let cn = nv(n+ nc)n

−2
c ,

cn
nvTb

‖Pα,srα,s‖2 =
[nv
n

+ op

(nc
n

)]−1 cn
nvTb

∑
s∈B

r′α,sQα,srα,s

=

[
n

nv
+ op

(nc
n

)] nv(n+ nc)n
−2
c

nvTb

∑
s∈B

r′α,sQα,srα,s

=
[
1 + op

(nc
n

)] n+ nc
nc(n− 1)T

n∑
i=1

T∑
t=1

wit,αr
2
it,α (33)

Now we can write Γ̂BICVα,n = Aα +Bα, where

Γ̂BICVα,n =
1

nvTb

∑
s∈B

‖(InvT −Qα,s)
−1(Ys − X̃α,sβ̂α)‖2 =

1

nvTb

∑
s∈B

r′α,s(InvT −Qα,s)
−2rα,s

=
1

nvTb

∑
s∈B

‖(InvT −Qα,s)
−1(Ys − X̃α,sβ̂α)‖2

=
1

nvTb

∑
s∈B

r′α,s(InvT −Qα,s)
−1Uα,s(InvT −Qα,s)

−1rα,s︸ ︷︷ ︸
≡Aα

+
1

nvTb

∑
s∈B

r′α,s(InvT −Qα,s)
−1(InvT − Uα,s)(InvT −Qα,s)

−1rα,s︸ ︷︷ ︸
≡Bα

where

Zα,s = (InvT −Qα,s)(I + cnPα,s)(InvT −Qα,s)

From the balance property of B and (33)

Aα =
1

nvTb

∑
s∈B

‖rα,s‖2 +
cn
nvTb

∑
s∈B

Pα,s‖rα,s‖2

=
1

nT
‖Ỹ− X̃αβ̂α‖2 +

[
1 + op

(nc
n

)] n+ nc
nc(n− 1)T

n∑
i=1

T∑
t=1

wit,αr
2
it,α (34)
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Assume Mα is in Category II. Then by (34) and
∑n

i=1

∑T
t=1wit,αr

2
it,α = kασ

2 + op(1)

Aα =
1

n
Ũ′(I − Pα)Ũ +

[
1 + op

(nc
n

)] n+ nc
nc(n− 1)T

[
kασ

2 + op(1)
]

=
1

n
Ũ′Ũ− 1

n
Ũ′PαŨ +

[
1 + op

(nc
n

)] n+ nc
nc(n− 1)T

[
kασ

2 + op(1)
]

=
1

n
Ũ′Ũ +

kασ
2

ncT
+ op

(
1

nc

)
It remains to show that Bα = op(n

−1
c ). From (32)

(InvT −Qα,s)Pα,s(InvT −Qα,s) =
(

1− nv
n

+ o
(nc
n

))
Pα,s(InvT −Qα,s) =

(
1− nv

n
+ o

(nc
n

))2

Pα,s

=
(nc
n

+ op

(nc
n

))2

Pα,s (35)

Thus, (
n

nc

)2

(InvT −Qα,s)Pα,s(InvT −Qα,s) = (1 + o(1))2Pα,s ≥
1

2
Pα,s (36)

for s ∈ B and n sufficiently large. Pre- and post-multiplying the above by (InvT − Qα,s)
−1

yields

(InvT −Qα,s)
−1Pα,s(InvT −Qα,s)

−1 ≤ 2

(
n

nc

)2

Pα,s (37)

Similarly by (32)

Zα,s =
{
InvT −

[nv
n

+ op

(nc
n

)]
Pα,s

}
(InvT + cnPα,s)

{
InvT −

[nv
n

+ op

(nc
n

)]}
= InvT +

[
op

(nc
n

)]2

(1 + cn)Pα,s (38)

since cn(1− nv/n)2 = (2− nv/n)nv/n. Using (34)

(InvT −Qα,s)
−1(InvT − Zα,s)(InvT −Qα,s)

−1

=
[
op

(nc
n

)]2

(1 + cn)(InvT −Qα,s)
−1Pα,s(InvT −Qα,s)

−1 ≤ op(1)(1 + cn)Pα,s.

Thus,

Bα ≤ op(1)(1 + cn)

(
1

nvTb

∑
s∈B

‖Pα,srα,s‖2

)
= op

(
1

nc

)
(39)

since from the above (cn/nvTb)
∑

s∈B ‖Pα,srα,s‖2 = Op(n
−1
c ), which proves (ii) in the propo-

sition for BICV. (iii) follows in a straightforward manner from (i) and (ii).
The extension of the proof to MCCV is straightforward from Theorem 2 in Shao (1993)

assuming the sufficient conditions given in Condition 1.
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M. Gammans, P. Mérel, and A. Ortiz-Bobea. Negative impacts of climate change on cereal

yields: statistical evidence from France. Environmental Research Letters, 12(5):054007,

2017.

T. Garg, M. Jagnani, and V. Taraz. Temperature and human capital in india. Journal of

the Association of Environmental and Resource Economists, 7(6):1113–1150, 2020.

E. Ghysels, P. Santa-Clara, and R. Valkanov. Predicting volatility: getting the most out of

return data sampled at different frequencies. J. Econometrics, 131(1-2):59–95, 2006. ISSN

0304-4076. doi: 10.1016/j.jeconom.2005.01.004.

E. Ghysels, A. Sinko, and R. Valkanov. MIDAS regressions: further results and new

directions. Econometric Rev., 26(1):53–90, 2007. ISSN 0747-4938. doi: 10.1080/

07474930600972467.

J. Graff Zivin, S. M. Hsiang, and M. Neidell. Temperature and human capital in the short

and long run. Journal of the Association of Environmental and Resource Economists, 5

(1):77–105, 2018.

M. Harari and E. L. Ferrara. Conflict, climate, and cells: a disaggregated analysis. Review

of Economics and Statistics, 100(4):594–608, 2018.

T. Hastie, R. Tibshirani, and R. Tibshirani. Best Subset, Forward Stepwise or Lasso? Anal-

ysis and Recommendations Based on Extensive Comparisons. Statistical Science, 35(4):

579 – 592, 2020. doi: 10.1214/19-STS733. URL https://doi.org/10.1214/19-STS733.

G. Heutel, N. H. Miller, and D. Molitor. Adaptation and the mortality effects of temperature

across us climate regions. Review of Economics and Statistics, pages 1–33, 2017.

H. Hong and B. Preston. Bayesian averaging, prediction and nonnested model selection.

Journal of Econometrics, 167(2):358 – 369, 2012. ISSN 0304-4076. doi: https://doi.org/10.

1016/j.jeconom.2011.09.021. Fourth Symposium on Econometric Theory and Applications

(SETA).

45

https://doi.org/10.1214/19-STS733


S. M. Hsiang. Temperatures and cyclones strongly associated with economic production in

the Caribbean and Central America. Proceedings of the National Academy of Sciences,

107(35):15367–15372, 2010.

S. M. Hsiang, K. C. Meng, and M. A. Cane. Civil conflicts are associated with the global

climate. Nature, 476(7361):438–441, 2011.

S. M. Hsiang, M. Burke, and E. Miguel. Quantifying the influence of climate on human

conflict. Science, 341(6151):1235367, 2013.

K. Jessoe, D. T. Manning, and J. E. Taylor. Climate change and labour allocation in rural

Mexico: Evidence from annual fluctuations in weather. The Economic Journal, 128(608):

230–261, 2018.

Y. Li, W. A. Pizer, and L. Wu. Climate change and residential electricity consumption in

the yangtze river delta, china. Proceedings of the National Academy of Sciences, 116(2):

472–477, 2019.

R. Mendelsohn, W. D. Nordhaus, and D. Shaw. The impact of global warming on agriculture:

a Ricardian analysis. American Economic Review, pages 753–771, 1994.

V. Mueller, C. Gray, and K. Kosec. Heat stress increases long-term human migration in

rural pakistan. Nature climate change, 4(3):182–185, 2014.

R. G. Newell, B. C. Prest, and S. E. Sexton. The gdp-temperature relationship: implications

for climate change damages. Journal of Environmental Economics and Management, page

102445, 2021.

R. J. Park, J. Goodman, M. Hurwitz, and J. Smith. Heat and learning. American Economic

Journal: Economic Policy, 12(2):306–39, 2020.

J. T. Ritchie and D. S. Nesmith. Temperature and crop development. In J. Hanks and J. T.

Ritchie, editors, Modeling Plant and Soil Systems, Agronomy 31, pages 5–29. American

46



Society of Agronomy, Crop Science Society of America, Soil Science Society of America,

1991.

W. Schlenker and M. J. Roberts. Nonlinear temperature effects indicate severe damages to

U.S. crop yields under climate change. Proceedings of the National Academy of Sciences,

106, 2009.

W. Schlenker, W. M. Hanemann, and A. C. Fisher. The impact of global warming on us

agriculture: an econometric analysis of optimal growing conditions. Review of Economics

and statistics, 88(1):113–125, 2006.

J. Shao. Linear model selection by cross-validation. Journal of the American Statistical

Association, 88(422):486–494, 1993. ISSN 0162-1459.

J. Shao. An asymptotic theory for linear model selection. Statistica Sinica, 7(2):221–264,

1997. ISSN 1017-0405. With comments and a rejoinder by the author.

C.-Y. Sin and H. White. Information criteria for selecting possibly misspecified parametric

models. Journal of Econometrics, 71(1):207 – 225, 1996. ISSN 0304-4076. doi: https:

//doi.org/10.1016/0304-4076(94)01701-8.

E. Somanathan, R. Somanathan, A. Sudarshan, and M. Tewari. The impact of tempera-

ture on productivity and labor supply: Evidence from indian manufacturing. Journal of

Political Economy, 129(6):1797–1827, 2021.

Q. H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses. Econo-

metrica, 57(2):307–333, 1989.

L. Wenz, A. Levermann, and M. Auffhammer. North–south polarization of european electric-

ity consumption under future warming. Proceedings of the National Academy of Sciences,

114(38):E7910–E7918, 2017.

S. N. Wood. Generalized additive models: an introduction with R. CRC press, 2017.

47



Y. Yang. Can the strengths of aic and bic be shared? a conflict between model indentification

and regression estimation. Biometrika, 92(4):937–950, 2005. ISSN 00063444. URL http:

//www.jstor.org/stable/20441246.

P. Zhang, J. Zhang, O. Deschenes, and K. Meng. Temperature effects on productivity and

factor reallocation: Evidence from a half million Chinese manufacturing plants. Journal

of Environmental Economics and Management, 88:1–17, 2018.

48

http://www.jstor.org/stable/20441246
http://www.jstor.org/stable/20441246


Table A1: Selecting Knots in Piecewise Yield Function Based on Minimized MSE
Unbalanced Panel Balanced Panel

One-knot Piecewise Two-knots Piecewise One-knot Piecewise Two-knots Piecewise

Knot MSE Knots MSE Knot MSE Knots MSE

29 0.046905 24, 26 0.046478 30 0.029987 29, 33 0.047226
28 0.046959 23, 27 0.046483 31 0.030061 30, 32 0.047235
30 0.047258 25, 26 0.046488 29 0.030243 29, 34 0.047239
27 0.047331 24, 27 0.046497 32 0.030493 30, 31 0.047239
26 0.047903 31, 32 0.046499 28 0.030736 29, 32 0.047244
31 0.048043 30, 33 0.046499 33 0.031261 29, 35 0.047269
25 0.048573 22, 27 0.046505 27 0.031377 30, 33 0.047282
32 0.049233 23, 26 0.046507 26 0.032090 29, 31 0.047285
24 0.049271 30, 32 0.046536 34 0.032273 24, 26 0.047301
23 0.049950 25, 27 0.046538 25 0.032816 28, 36 0.047301

Notes: For illustration purpose, in each case, only the smallest ten MSEs and their corresponding
knots are presented.

Figure A1: One-knot Spline Function of Temperature Effects on Economic Growth
Notes: Solid lines are spline functions recovered based on point estimates, and shallow bands are 95%

confidence intervals constructed by applying the delta method on country-clustered standard errors.
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Table A2: Weather Impacts on Corn Yields: Unbalanced Sample
(1) (2) (3) (4)

Average temperature: April 0.0110***
[0.0020]

Average temperature: May 0.0033
[0.0029]

Average temperature: June -0.0093
[0.0057]

Average temperature: July -0.0586***
[0.0084]

Average temperature: August -0.0305***
[0.0036]

Average temperature: September 0.0021
[0.0047]

GDD (8-32C, in 100C) 0.0802*
[0.0316]

GDD, squared -0.0018*
[0.0007]

HDD (34C+), squared root -0.1240***
[0.0123]

Degrees accumulated above 0C 0.0002*** 0.0002
[0.0001] [0.0001]

Degrees accumulated above 24C 0.0059**
[0.0017]

Degrees accumulated above 26C -0.0107***
[0.0022]

Degrees accumulated above 29C -0.0056***
[0.0007]

Precipitation 0.1794*** 0.1141*** 0.1055*** 0.1068***
[0.0169] [0.0189] [0.0201] [0.0205]

Precipitation, squared -0.0115*** -0.0087*** -0.0082*** -0.0084***
[0.0012] [0.0014] [0.0015] [0.0015]

Signal-to-noise ratio 0.2529 0.3813 0.4082 0.3935
Observations 120,995 120,995 120,995 120,995
Notes: Standard errors (in brackets) are state-clustered. Significance: * .05, ** .01, *** .001.
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Table A3: Weather Impacts on Corn Yields: Balanced Sample
(1) (2) (3) (4)

Average temperature: April 0.0126***
[0.0021]

Average temperature: May 0.0008
[0.0028]

Average temperature: June 0.0014
[0.0038]

Average temperature: July -0.0453***
[0.0082]

Average temperature: August -0.0320***
[0.0028]

Average temperature: September 0.0075
[0.0050]

GDD (8-32C, in 100C) 0.1768***
[0.0284]

GDD, squared -0.0041***
[0.0007]

HDD (34C+), squared root -0.1491***
[0.0101]

Degrees accumulated above 0C 0.0003*** 0.0003***
[0.0000] [0.0000]

Degrees accumulated above 29C -0.0055***
[0.0007]

Degrees accumulated above 30C -0.0099***
[0.0006]

Degrees accumulated above 33C -0.0084**
[0.0024]

Precipitation 0.2245*** 0.1498*** 0.1380*** 0.1347***
[0.0293] [0.0316] [0.0294] [0.0293]

Precipitation, squared -0.0156*** -0.0123*** -0.0117*** -0.0114***
[0.0025] [0.0026] [0.0025] [0.0025]

Signal-to-noise ratio 0.3019 0.6194 0.6225 0.5688
Observations 44,814 44,814 44,814 44,814
Notes: Standard errors (in brackets) are state-clustered. Significance: * .05, ** .01, *** .001.
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Table A4: Temperature Effects on GDP: Unbalanced Panel
knot specification

0,5,. . . ,25◦C 0,3,. . . ,27◦C 16◦C

(1) (2) (3) (4) (5) (6) (7) (8)

Temp -0.00042 0.01272*** 0.01061*** 0.01076***

[0.00206] [0.00374] [0.00298] [0.00240]
Temp, squared -0.00049*** -0.00026 -0.00051

[0.00012] [0.00033] [0.00033]
Temp, cubic -0.00001 0.00002

[0.00001] [0.00003]

Temp, 4th order 0.00000
[0.00000]

Temp splines:

1st segment 0.01671*** 0.01658*** 0.00628*
[0.00107] [0.00109] [0.00300]

2nd segment 0.00611 0.01055 -0.01161***

[0.00419] [0.00550] [0.00320]
3rd segment 0.00370 0.00279

[0.00363] [0.00313]

4th segment 0.00946 0.00551
[0.00726] [0.00441]

5th segment -0.01299** 0.00832
[0.00435] [0.00818]

6th segment -0.00647 0.00579

[0.00497] [0.00921]
7th segment -0.01389* -0.01456*

[0.00571] [0.00611]

8th segment -0.01283*
[0.00602]

9th segment 0.00065

[0.00459]
10th segment -0.00589

[0.00588]

11th segment -0.03748***
[0.00681]

Prec 0.01929 0.01894 0.01445 0.01449 0.01494 0.01568 0.01562 0.01412
[0.01029] [0.00996] [0.00990] [0.00992] [0.01004] [0.01015] [0.01021] [0.00997]

Prec, squared -0.00566* -0.00559* -0.00475 -0.00476 -0.00486 -0.00500 -0.00498 -0.00466

[0.00256] [0.00253] [0.00252] [0.00252] [0.00254] [0.00256] [0.00257] [0.00251]
SNR 0.0009 0.0009 0.0046 0.0047 0.0048 0.0058 0.0084 0.0052

Observations 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584

Notes: Standard errors (in brackets) are country-clustered. Significance: * .05, ** .01, *** .001.
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Table A5: Selecting Knot in GDP Spline Based on Minimized MSE
Unbalanced Panel Balanced Panel

Knot MSE Knot MSE

16 0.0026991 27 0.0022868
15 0.0026995 16 0.0022893
14 0.0027002 15 0.0022896
27 0.0027006 17 0.0022908
13 0.0027015 11 0.0022911
17 0.0027022 19 0.0022912
12 0.0027023 18 0.0022914
18 0.0027039 20 0.0022914
19 0.0027044 12 0.0022918
11 0.0027046 14 0.0022921

Notes: For illustration purpose, in each case, only the smallest ten MSEs and their
corresponding knots are presented.
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Table A6: Temperature Effects on GDP: Balanced Panel
knot specification

5,. . . ,25◦C 3,. . . ,27◦C 27◦C

(1) (2) (3) (4) (5) (6) (7) (8)

Temp -0.0026 0.01019** 0.00574 0.01162

[0.00184] [0.00329] [0.00531] [0.00774]

Temp, squared -0.00044** -0.00004 -0.00098
[0.00014] [0.00048] [0.00116]

Temp, cubic -0.00001 0.00004

[0.00001] [0.00006]
Temp, 4th order 0.00000

[0.00000]

Temp splines:
1st segment 0.00488 0.01245* -0.00067

[0.00296] [0.00526] [0.00179]

2nd segment 0.00374* 0.0016 -0.03676***
[0.00181] [0.00171] [0.00692]

3rd segment 0.00325 0.00541*

[0.00449] [0.00263]
4th segment -0.00850* 0.00250

[0.00404] [0.00265]
5th segment -0.00994 0.00517

[0.00575] [0.00735]

6th segment -0.01306 -0.01030*
[0.00699] [0.00470]

7th segment -0.01216

[0.00800]
8th segment -0.00212

[0.00330]

9th segment -0.00556
[0.00736]

10th segment -0.03803***

[0.00704]
Prec 0.01606 0.01464 0.01019 0.0106 0.01079 0.01023 0.01057 0.01274

[0.01134] [0.01111] [0.01093] [0.01106] [0.01111] [0.01116] [0.01134] [0.01076]
Prec, squared -0.00458 -0.00429 -0.00348 -0.00358 -0.00363 -0.00349 -0.00357 -0.0039

[0.00297] [0.00294] [0.00291] [0.00294] [0.00295] [0.00293] [0.00297] [0.00286]

SNR 0.0007 0.0011 0.0041 0.0043 0.0044 0.0043 0.0077 0.0054
Observations 4,300 4,300 4,300 4,300 4,300 4,300 4,300 4,300

Notes: Standard errors (in brackets) are country-clustered. Significance: * .05, ** .01, *** .001.
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