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Motivation

Setting: For i = 1, 2, . . . , n, t = 1, 2, . . . ,T , we observe a scalar outcome Yit ; in
addition, for each i and t, we observe a regressor Witτ at a higher frequency
τ = 1, 2, . . . ,H.

Annual Outcome Daily Temperature
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Large Empirical Literature

��� Weather and Climate Change Impacts (Review: Dell, Jones and Olken, JEL
2014)

- Agriculture: Deschenes and Greenstone (2007, AER), Schlenker and Roberts
(2009, PNAS), Cui (2020, JEEM), Jagnani et al. (forthcoming, EJ), ...

- Migration: Feng et al. (2010, PNAS), Fan et al. (2018, JAERE), ...
- Health and Productivity: Deschênes and Greenstone (2011, AEJ: Applied),

Barreca et al. (2016, JPE), Zhang et al. (2018, JEEM), Park et al. (2020,
AEJ: Applied), ...

- ...

��� Pollution Impacts
Graff Zivin and Neidell (2012, AER), Hanna and Oliva (2015, JPubE), Carter
et al. (2016, SciRep), Metaxoglou and Smith (2020, AJAE), He et al. (2020,
JDE), ...
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Motivation

Goals of the Literature

1. Causal Inference
identify the damage/response function that governs the relationship
between Yit and the high-frequency regressor {Witτ}Hτ=1

2. Prediction of Climate Change Impacts
estimate the impact of future climate change on outcomes of interest

Empirical Practice

1. construct fixed effects regression model using summary statistics of
T k
it ({Witτ}Hτ=1) as regressors

yit =
K∑

k=1

βkT k
it ({Witτ}Hτ=1)

︸ ︷︷ ︸
response function

+ai + uit (1)

Note: straightforward to accommodate year fixed effects and other control variables

Examples of Summary Statistics
- temperature bins
- various degree day measures
- linear or quadratic function of annual mean
- ...

2. Use the response function to estimate the impact of projected future CC
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Motivation

Why Model Selection?

��� While applied researchers typically consider different models and report their
results, model selection criteria are still required to choose between the
different damage functions to inform policy.

��� Different response functions have different policy implications!
- different predictions of future climate change impacts
- different adaptation mechanisms

Example: Predicted Changes in Corn Yields under HadCM3-B1 2015-2050

Monthly Averages Degree Days 3◦C Bins

Which of the above projections should be used to inform policy?
To answer this question, some papers use some form of cross-validation.

��� In this paper, we formally examine the conditions under which Monte Carlo
cross-validation and GICs are model selection consistent with the goal of
providing formal guidance to practitioners.
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This Paper

Roadmap

��� Formalize the model selection problem in CC impact studies

��� Provide conditions for model selection consistency of Monte Carlo
cross-validation (MCCV) and generalized information criteria (GIC)

��� Simulations and two empirical applications illustrate the results

Caveats:

��� model selection consistency as an objective
theoretically established trade-off between consistency and risk optimality
(Yang 2005)

��� the set of models taken as given: we assume that the researcher’s choice of
models is informed by scientific literature and/or economic theory
(finite-dimensional)

��� fully data-dependent approach to model selection beyond this paper: our
results remain relevant since model selection criteria are used to guide tuning
parameter choices
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Model Selection Problem in Climate Change Impact Studies
Setup and Notation

Set of Models Considered: {Mα}Aα=1 where A <∞
For each α, Mα

Yit = Xit,α
′βα︸ ︷︷ ︸

response function

+ai,α + uit,α

where

- kα ≡ dim(Xit,α) = dim(βα)

- Wit ≡ {Witτ}Hτ=1

- Xit,α = µα(Wit), where Xit,α is a kα × 1 vector

- ai,α consists of time-invariant unobservables; additional regressors and fixed
effects can be readily accommodated
Following the empirical literature, we assume all models considered are linear
in the parameters and separable in ai,α and uit,α.

Remarks
While the models under consideration are linear models, this model selection
problem is not a simple variable selection problem in linear regression.
Two features confirm this: (1) definitions of nested and non-nested models,
(2) asymptotic behavior of model selection criteria
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Model Selection Problem in Climate Change Impact Studies
Definitions

For two models Mα and Mγ , assume wlog kα < kγ .

I Mα is nested in Mγ iff xω,α = Rα,γxω,γ for all ω, where Rα,γ is a kα × kγ
non-random matrix,

I Mα and Mγ are non-nested, overlapping iff Mγ does not nest Mα, but
x ′ω,αβα = x ′ω,γβγ for all ω and some βα ∈ Bα and βγ ∈ Bγ ,

I Mα and Mγ are strictly non-nested iff they are not nested and
x ′ω,αβα 6= x ′ω,γβγ for all ω, βα ∈ Bα and βγ ∈ Bγ .

Examples: A is nested in QinA and Q, QinA and Q are non-nested overlapping.

- Annual Mean (A): Yit = βαW̄it + ai,α + uit,α

- Quadratic in Annual Mean (QinA): Yit = β1
γW̄it + β2

γW̄
2
it + ai,γ + uit,γ

- Quarterly Mean (Q): Yit =
∑4

j=1 β
j
δW̄

Qj

it + ai,δ + uit,δ

Comparison with Variable Selection in Linear Models

��� Nested: The regressors in Mα is a subset of regressors in Mγ , i.e. elements
in Rα,γ are either zero or one.

��� Non-nested, overlapping: xω,α and xω,γ include a common subset of
regressors.
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Consistency of Model Selection Criteria
Model Selection Criteria

��� MCCV
- MCCV-p: fixed training-to-full sample ratio
- MCCV-Shao: vanishing training-to-full sample ratio (Shao 1993)

��� GICs: GICα,λnT
= −n(T − 1)log(MSE)− λnT kα

- MSE =
∑n

i=1

∑T
t=1(ỹit − x̃′it,αβ̂α)2/(nT ), λnT is the penalty term for the

dimension of the model
- Special cases:

AIC (λnT = 2)
BIC (λnT = log(nT ))

SW1 (λnT =
√

nT log(log(nT ))) and SW2 (λnT =
√

nT log(nT )), proposed by Sin
and White (1996)

In the following, we examine the model selection consistency of the above criteria.
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Consistency of Model Selection Criteria
Summary of Theoretical Results

MCCV (Extending Shao 1993):
Assuming sufficient regularity conditions as well as the following assumptions

1. (DGP) For i = 1, 2, . . . , n, t = 1, 2, . . . ,T , Yit = Xit,?β? + ai,? + uit,?, where

uit,?|Wi1, . . . ,WiT
i.i.d.∼ (0, σ2) across i and t. For some α = 1, . . . ,A,

Xit,? = R?,αXit,α.

2. (Training/Testing Sample Ratios) nv/n→ 1 and nc = n − nv →∞,

b−1n−2
c n2 → 0,

⇒ P(M̂CV =M∗)→ 1 as n→∞.

Key Takeaways

- Traditional implementation of MCCV using large training to full sample
ratios are likely to overfit.

- Formal treatment of MCCV requires:

(i) homoskedasticity and serial uncorrelatedness in the error term,
(ii) the true model is under consideration.

Since both are restrictive, we next examine the conditions under which GICs
are model selection consistent.
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Model Selection Problem in Climate Change Impact Studies
Summary of Theoretical Results

GICs (Vuong 1989, Sin and White 1996): Assuming Condition 2 in the paper, as
n →∞.

(1) Suppose E0[log(f (Ỹi |X̃i,α; β∗α))] = E0[log(f (Ỹi |X̃i,γ ; β∗γ ))] and f (.|x̃.,α; β∗α) = f (.|x̃.,γ ; β∗γ )

hold. Then

P(M̂λnT
=Mα) = P

(
GICα,λnT

> GICγ,λnT

)
= P

(
LRα,γn > λnT (kα − kγ )

)
→ 1,

if λnT →∞.

(2) Suppose E0[log(f (Ỹi |X̃i,α; β∗α))] = E0[log(f (Ỹi |X̃i,γ ; β∗γ ))] and f (.|x̃.,α; β∗α) 6= f (.|x̃.,γ ; β∗γ )

hold. Then

P(M̂λnT
=Mα) = (GICα,λnT

> GICγ,λnT
) = P

(
1
√
nT

LR
α,γ
nT

>
λnT√
nT

(kα − kγ )

)
→ 1,

if λnT /
√
nT →∞.

(3) Suppose, without loss of generality, that E0[log(f (Ỹi |X̃i,α; β∗α))] > E0[log(f (Ỹi |X̃i,γ ; β∗γ ))]

holds. Then

P(M̂λnT
=Mα) = P(GICα,λnT > GICγ,λnT ) = P

(
1

nT
LRα,γnT >

λnT

nT
(kα − kγ)

)
→ 1,

if λnT /(nT )→ 0.

Implications

��� AIC is not model selection consistent.

��� BIC is model selection consistent in cases (1) and (3), but not (2), which
occurs if none of the models under consideration nest the true model (see
Section 3.2.1).

��� SW1 and SW2 are consistent under all three cases.

Notation: f (.) is the conditional density, β∗α is the probability limit of the fixed effects estimator of

the slope coefficient of Mα.
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Consistency of Model Selection Criteria
Summary of Baseline Simulation Analysis

Design

DGPs: Annual Mean (A), Quadratic in Annual Mean (QinA), Quarterly
Mean (Q)

Models: (1) a set of nested models, (2) a set of nested and non-nested models

Results: Consistent with theoretical analysis...

��� When the true model (DGP) is nested in the set of models under
consideration, MCCV-Shao, BIC, SW1 and SW2 select the most parsimonious
model that nests the true model, whereas AIC and MCCV-p either select the
true model or larger models that nest it with high probability.

��� When the true model (DGP) is not nested in any of the models under
consideration, then only SW1 and SW2 are pseudo-consistent, whereas the
remaining criteria, including BIC, may overfit.

Since the signal-to-noise ratio of the design can impact the finite-sample
performance of model selection procedures (c.f. Hastie et al 2020), we vary the
signal-to-noise ratio.
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Consistency of Model Selection Criteria
Simulation Analysis with Varying Signal-to-Noise Ratio

Set of Nested Models

Details of Sim Design

Note: N denotes the null model with fixed effects only.
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Consistency of Model Selection Criteria
Simulation Analysis with Varying Signal-to-Noise Ratio

Set of Non-nested Models

Note: N denotes the null model with fixed effects only.
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Consistency of Model Selection Criteria
Summary of Simulation Analysis

Key Takeaway for Empirical Practice
When the true model is nested in at least one of the models under consideration:

��� For higher SNR levels: BIC, MCCV-Shao and the SW criteria choose it with
high probability, whereas AIC and MCCV-p may choose larger models that
nest it.

��� For low SNR levels: The SW criteria may “underfit.”
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Empirical Illustration

Empirical Application I: Temperature and Corn Yields
Data: corn sample based on Schlenker and Roberts (2009, PNAS), extended
to 2015

- This example exhibits a relatively high SNR (' 60%).

Empirical Application II: Temperature and GDP (low SNR)
Data: GDP and temperature data from Burke, Hsiang and Miguel (2015,
Nature)

- This example exhibits a very low SNR (< 1%).
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Empirical Application I: Temperature and Crop Yields

Data: corn yields covering 1950-2015 from USDA Quick Stats, weather data from
PRISM dataset (Schlenker and Roberts 2009, extended to 2015)
Regression:

log(Yit) = X ′it,αβα + θ1Pit + θ2P
2
it + δ1,s t + δ2,s t

2 + ai + εit ,

Yit : corn yields (bushels/acre) in county i in crop year t

Xit,α = µα(Tit): temperature variables constructed based on daily average

temperature of the growing season Tit ≡ {Titτ}Hτ=1

Pit : growing season total precipitation

δ1,s , δ2,s : state-level quadratic trends

Temperature specifications:

a. No temperature variables

b. monthly avg temp

c. 1◦C bin (using average daily temp)

d. 3◦ step function (sinosudial interpolation of min-max temp before binning)

e. SHF degree days

f. one-knot spline

g. two-knot spline
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Empirical Application I: Estimation Results

A. Unbalanced Panel B. Balanced Panel

��� The figure presents the estimation results with pointwise 95% confidence
intervals for the one-knot spline, two-knot spline, and 3◦C step function.

��� The results for each model is quite similar whether we use the unbalanced or
balanced panel.

��� When we compare the different models, they provide very similar
response/damage functions despite having a different number of parameters.
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Empirical Application I: Model Selection Results
Model SNR AIC BIC MCCV-p MCCV-S SW1 SW2
Unbalanced panel
a. no temperature var 10.11% -333091 -332490 0.07126 0.07369 -299391 -259436
b. monthly avg temp 25.29% -348417 -347757 0.06443 0.06752 -311455 -267634

c. 1◦C daily temp bin 36.76% -358753 -357792 0.05979 0.06218 -304941 -241143

d. 3◦C step function 41.52% -362864 -362127 0.05768 0.05984 -321554 -272577
e. SHF degree days 38.13% -361052 -360421 0.05795 0.05990 -325721 -283833
f. one-knot spline 40.82% -361251 -360630 0.05778 0.05954 -326463 -285220
g. two-knot spline 39.35% -362102 -361471 0.05744 0.05923 -326771 -284883

Balanced panel
a. no temperature var 11.42% -138208 -137895 0.04784 0.04998 -126545 -113340
b. monthly avg temp 30.19% -145067 -144702 0.04245 0.04585 -131460 -116054

c. 1◦C daily temp bin 56.69% -153185 -152558 0.03530 0.03797 -129858 -103447

d. 3◦C step function 64.66% -155416 -154980 0.03322 0.03549 -139217 -120876
e. SHF degree days 61.94% -153302 -152962 0.03583 0.03787 -140667 -126361
f. one-knot spline 62.25% -154706 -154375 0.03310 0.03486 -142395 -128455
g. two-knot spline 56.88% -154789 -154449 0.03315 0.03500 -142153 -127848

��� AIC and BIC choose the 3◦C step model, whereas SW1 and SW2 select the
two- and one-knot spline, respectively. (Cross-validation exercise in SR 2009
selects the 3C step function.)

��� The results are similar whether we consider the balanced or unbalanced
sample.

��� The selected models yield similar response functions, though they differ in the
number of parameters required to estimate them.

��� These results are consistent with the simulation designs where the true model
is contained in the set of models under consideration.

��� Since the selected models yield similar response functions, they also provide
very similar climate change projections.
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Empirical Application I: Climate Change Projections

Predicted changes in corn yields under HadCM3-B1: 2015-2050

(1) monthly averages (2) 1◦C Bin (3) 3◦C Step

(4) degree days (5) one-knot spline (6) two-knot spline

��� In terms of projections, the 3◦C bins and the one-knot and two-knot splines, selected by
the different criteria, deliver very similar results.

Details on HadCM3-B1
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Empirical Application II: GDP and Temperature

Data: country-level per capita GDP over 1960-2012 for 160 countries (World
Bank’s World Development Indicators), aggregated country-level annual
temperature and precipitation over 1900-2010 (University of Delaware
reconstruction)

Regression:

log(Yit) = X ′it,αβα + θ1Pit + θ2P
2
it + δ1,i t + δ2,i t

2 + ai + µt + εit . (2)

Yit represents per capita GDP in country i in year t

Xit,α = µα(Tit), where Tit is annual temperature

Pit is annual precipitation

Temperature Specifications:

a. no temperature variable at all,

b. simple average,

c. quadratic,

d. cubic,

e. fourth order,

f. linear spline with knots at every 5◦C from 0◦C to 25◦C,

g. linear spline with knots at every 3◦C from 0◦C to 27◦C.

h. linear spline with one knot determined by minimizing MSE.
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Empirical Application II: Estimation Results

��� While the results for most models are consistent across unbalanced and
balanced samples, that is not the case for all of them.

��� For the unbalanced panel, the one-knot spline provides a response function
that is similar to the quadratic function, whereas for the balanced panel it
provides very different results.
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Empirical Application II: Model Selection Results

Model R̂2 SNR AIC BIC MCCV-p MCCV-S SW1 SW2
Unbalanced panel:
a. none 0.09% 0.09% -37166 -34558 0.00542 0.00690 8007 54457
b. simple avg 0.09% 0.09% -37164 -34549 0.00543 0.00690 8126 54698
c. quadratic 0.46% 0.46% -37186 -34564 0.00526 0.00674 8222 54915
d. cubic 0.47% 0.47% -37184 -34556 0.00527 0.00676 8341 55155
e. 4th order 0.47% 0.48% -37183 -34547 0.00529 0.00679 8460 55395

f. 5◦C spline 0.58% 0.58% -37183 -34527 0.00519 0.00668 8813 56110

g. 3◦C spline 0.84% 0.84% -37192 -34509 0.00515 0.00668 9275 57056
h. one-knot spline 0.52% 0.52% -37189 -34568 0.00511 0.00659 8218 54911

Balanced panel:
a. none 0.07% 0.07% -25160 -23747 0.00424 0.00516 -4387 16503
b. simple avg 0.11% 0.11% -25160 -23740 0.00423 0.00513 -4293 16691
c. quadratic 0.41% 0.41% -25172 -23753 0.00416 0.00507 -4306 16678
d. cubic 0.42% 0.43% -25169 -23736 0.00416 0.00508 -4115 17057
e. 4th order 0.44% 0.44% -25167 -23729 0.00417 0.00510 -4020 17246

f. 5◦C spline 0.43% 0.43% -25163 -23711 0.00408 0.00501 -3828 17626

g. 3◦C spline 0.77% 0.77% -25169 -23692 0.00402 0.00499 -3461 18370
h. one-knot spline 0.54% 0.54% -25176 -23750 0.00424 0.00516 -4215 16863

��� model without any temperature variables chosen by SW criteria for both the
unbalanced and balanced panel (potential for “underfitting”)

��� inconsistent results across samples:

- unbalanced panel: the one-knot spline is chosen by BIC and both MCCVs,
whereas AIC selects the 3◦ C spline, delivering similar response functions.

- balanced panel: AIC chooses the one-knot spline, BIC chooses the quadratic
model, the MCCV criteria choose the 3◦C spline. These models deliver
different response functionts, especially the one-knot spline.

��� smoothing splines with a cubic spline basis deliver more consistent results across

the two samples in line with the SW criteria SS Results
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Synthesizing Theoretical, Simulation and Empirical Results

��� Rather than reporting the results for a single model selection criterion, the
results here suggest that reporting a range of model selection criteria can be
informative.

- If the true model is nested in one of the models under consideration, all
criteria should deliver similar response functions, despite their varying
number of parameters (e.g. yield-temperature relationship).

��� Given its relevance for the finite-sample behavior of the model selection
criteria, the signal-to-noise ratio should always be reported.

��� For settings where the models are not supported by the scientific or economic
literature, it is important to complement analysis with a fully data-dependent
procedure to estimate the response function.
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Concluding Remarks

��� This paper formalizes the model selection problem in CC impact studies
emphasizing its “nonlinear nature”.

��� We provide conditions for model selection consistency via MCCV and GICs in
the context of CC impact studies illustrated via simulations and applications.

��� The results have several implications for empirical practice:
- The practice of using MCCV-p with fixed training-to-full sample proportions

has a tendency to overfit, which is especially problematic in settings where
the models are not grounded in science or economics.

- While SW1 and SW2 are model selection consistent in general, they may
underfit in finite samples when the signal-to-noise ratio is low.

Recommendation: report several model selection criteria as well as SNR

��� This paper assumes that the set of models considered is informed by the
scientific or economic literature. For settings where such information is not
available, fully data-dependent procedures should be employed.

��� Important direction for future work: fully data-dependent procedure with
valid post-selection inference

Comments are welcome @ dghanem@ucdavis.edu !
Thank you!
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Details of Simulation Design

The following response functions generate Yit for the three DGPs we consider:

I Annual Mean (A): Yit = W̄it + ai,α + uit,α,

I Quadratic in Annual Mean (QinA): Yit = 0.2W̄it − 0.05W̄ 2
it + ai,δ + uit,δ,

I Quarterly Mean (Q): Yit = −0.25W̄Q1
it + 0.75W̄Q3

it + ai,γ + uit,γ .

Temperature Data: We use a random sample of counties from the NCDC
temperature dataset for the years 1968-1972 as Wit for i = 1, . . . , n and
t = 1, . . . ,T , where T = 5.

Unobservables:

- ai |Wi1,Wi2, . . . ,Wi5
i.i.d.∼ N(0.5W̄i , 1), where W̄i =

∑T
t=1

∑H
τ=1 Witτ/(TH).

- ui = (ui1, . . . , uiT ) = ε1
i + ε2

i , where ε1
i |Wi1, . . . ,Wi5, ai

i.i.d.∼ N(−0.5,Σ1) and

ε2
i |Wi1, . . . ,Wi5, ai

i.i.d.∼ N(0.5,Σ2), with

Σ1 =


1 0.5 0.1 0 0

0.5 1 0.5 0.1 0
0.1 0.5 1 0.5 0.1
0 0.1 0.5 1 0.5
0 0 0.1 0.5 1

 , Σ2 =


1 0.5 0.1 0 0

0.5 0.75 0.5 0.1 0
0.1 0.5 1 0.5 0.1
0 0.1 0.5 0.75 0.5
0 0 0.1 0.5 1

 .

Back
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HadCM3-B1 Scenario

Developed by UK Meteorological Office

Assumptions

- Rapid economic growth as in A1, but with rapid changes towards a service
and information economy.

- Population rising to 9 billion in 2050 and then declining as in A1.

- Reductions in material intensity and the introduction of clean and resource
efficient technologies.

- An emphasis on global solutions to economic, social and environmental
stability.

Warming: 1.9◦C globally, 3◦C in North America
Source: https://sos.noaa.gov/datasets/

climate-model-temperature-change-hadley-b1-1870-2100/

Back
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GDP-temperature: Smoothing Spline Results

A. Unbalanced B. Balanced

Back
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