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Università di Roma “Tor Vergata”

Climate Econometrics Seminar, April 20, 2021



Introduction

We propose a novel model for climate time series characterized by persistent
stationary cycles, the fractional Sinusoidal Waveform (fSW) process.

The underlying idea is to allow the parameters that regulate the amplitude and
phase to evolve according to fractional noise processes.

The advantages over the Gegenbauer process are twofold: (i) the
autocovariance function is available in closed form; (ii) deterministic cycles
arise as a special case.

When combined additively with other components, such as ’background
continuum’ red noise, we obtain a model suitable for climate time series with
mixed spectra (spectral distribution function with jumps).

Our illustrations deal with the change in amplitude and phase of the
intra-annual component of carbon dioxide concentrations in Mauna Loa, and
with the estimation and the quantification of the contribution of orbital cycles
to the variability of paleoclimate time series.



Carbon dioxide concentrations (ppm) at Mauna Loa (Hawaii).
Issues: characterizing the interannual and intra-annual variability of CO2 (varying
amplitude and phase of seasonal cycle).
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Four paleoclimate time series dealing with ice cores reconstructions of temperatures,
methane (CH4), carbon dioxide (CO2) concentrations and ice volume.
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Temperature series
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Cycle models: a brief review

The following harmonic process is a model for stationary deterministic
cycles:

yt = α cos(λt) + α∗ sin(λt), α ∼ N(0, σ2
α), α∗ ∼ N(0, σ2

α),

λ is a fixed frequency in [0, π] and E(αα∗) = 0.
The process is characterized by ACF ρ(k) = cos(λk), k ∈ Z, and a purely
discrete (or line, or narrow-band) spectrum.

The following AR(2) process is a model for stationary short memory
stochastic cycles:

yt = 2ρ cos(λ)yt−1 − ρ2yt−2 + εt , εt ∼ i.i.d. N(0, σ2), |ρ| < 1,

The spectral density is continuous and bounded, with a spectral peak around
the frequency λ.

If ρ = 1, the cycle is nonstationary and it is said to be integrated of order
1 at the frequency λ. Introducing the lag operator L, Lkyt = yt−k , k ∈ Z, the
integrated cycle is written (1− 2 cos(λ)L + L2)yt = εt .



The following Gegenbauer process is a model for stationary long memory
cycles: (

1− 2 cos(λ)L + L2
)d

yt = εt , εt ∼ i.i.d. N(0, σ2),

where d ∈ R is the memory parameter.

The process is stationary if 0 < λ < π and d < 1/2, or when λ = 0, π and
d < 1/4.

The spectral density

f (ω) =
σ2

2π

∣∣∣∣2 sin
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ω − λ

2

)∣∣∣∣−2d ∣∣∣∣2 sin

(
ω + λ

2

)∣∣∣∣−2d

, ω ∈ [−π, π].

has poles at ±λ.

One limitation of the Gegenbauer process and its k-factor generalizations is
the lack of a closed form expression for the autocovariance function. This
prevents exact maximum likelihood estimation and optimal signal extraction.
Several computationally efficient algorithms have been proposed.

k-factor Gegenbauer ARMA models are multiplicative. The estimation of
components of variability is not easy.



The Fractional Sinusoidal Waveform Process

The fractional Sinusoidal Waveform process with memory parameter d , frequency λ
and disturbance variance σ2

η, is defined as

yt = αt cos(λt) + α∗t sin(λt), t ∈ N,

αt = (1− L)−dηt , ηt ∼ i.i.d. N(0, σ2
η),

α∗t = (1− L)−dη∗t , η∗t ∼ i.i.d. N(0, σ2
η),

(1)

where ηt and η∗t are mutually independent.

The process is stationary when d < 1/2, in which case E(yt) = 0,

Var(yt) ≡ σ2
α, with σ2

α = σ2
η

Γ(1−2d)
Γ2(1−d) .

Generalization of the harmonic process, similar in spirit to Hannan’s integrated
model of trigonometric seasonality (Hannan, 1964).



Autocovariance and autocorrelation function

Let γ(k) = E(ytyt−k) and γα(k) = E(αtαt−k), k ∈ Z. Then,

γ(k) = γα(k) cos(λk), (2)

where

γα(k) = σ2
η

Γ(1− 2d)Γ(d + k)

Γ(1 + k − d)Γ(d)Γ(1− d)
.

Let ρ(k) = γ(k)/γ(0)

ρ(k) =
Γ(1− d)Γ(d + k)

Γ(1− d + k)Γ(d)
cos(λk), k ∈ Z.

As k →∞, ρ(k) ∼ ck2d−1 cos(kλ), c > 0,

For a proof of these formulae, see section 2.1 of the paper.



Spectral density

The spectral density function is

f (ω) =
σ2
η

4π

{∣∣∣∣2 sin

(
ω − λ

2

)∣∣∣∣−2d

+

∣∣∣∣2 sin

(
ω + λ

2

)∣∣∣∣−2d
}
, ω ∈ [−π, π]. (3)

f (ω) ∼ σ2

4π |ω − λ|
−2d as ω → λ.

For a proof see section 2.2 of the paper. The derivation is based on the
equivalent representation of the fSW process:

yt =
1√
2

(wt + w̄t),

where wt is the complex fractional noise process (1− e−ıλL)dwt = ζt ,
ζt = 2−1/2(κt + ıκ∗t ), with κt and κ∗t i.i.d. Gaussian variables, and
(1− eıλL)d w̄t = ζ̄t , ζ̄t = 2−1/2(κt − ıκ∗t ).



Simulated time series of length n = 500, generated by an fSW process with
d = 0.40, λ = π/6, σ2

η = 1.
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Deterministic Cycles

Recall σ2
α = σ2

η
Γ(1−2d)
Γ2(1−d) . Assume that for c > 0 we can write

σ2
η = 4c(1− 2d)/π. Then,

lim
d→ 1

2−
σ2
α = c > 0

(as limx→0+ xΓ(x) = 1, x = 1− 2d).

The autocovariance function

γ(k) = σ2
α

Γ(1− d)Γ(d + k)

Γ(1 + k − d)Γ(d)
cos(λk), σ2

α > 0,

for d → (1/2)−, tends to γ(k) = σ2
α cos(λk).

Also, writing the spectral density function (3) in terms of σ2
α,

f (ω) =
σ2
α

4π

Γ2(1− d)

Γ(1− 2d)

{∣∣∣∣2 sin

(
ω − λ

2

)∣∣∣∣−2d

+

∣∣∣∣2 sin

(
ω + λ

2

)∣∣∣∣−2d
}
,

limd→ 1
2−

f (ω) =
σ2
α

2 δ(ω − λ), where δ(·) is Dirac’s Delta function.



Contemporaneous aggregation and cyclical long memory

We iterate the argument by Granger (1980) to illustrate a possible generating
mechanism for cyclical long memory.

Let us consider a panel of N short memory cyclical processes

yit = αit cos(λt) + α∗it sin(λt), i = 1, 2, . . . ,N,

where λ ∈ [0, π] is fixed and αit = φiαi,t−1 + ηit ,, ηit ∼ i.i.d. N(0, σ2
η),

α∗it = φiα
∗
i,t−1 + η∗it , η

∗
it ∼ i.i.d. N(0, σ2

η).

The individual coefficients φ2
i are an i.i.d. sample from a Beta distribution,

φ2 ∼ Beta(p, q)
We are interested in characterizing the behaviour of cross-sectional aggregate

yNt =
1√
N

N∑
i=1

yit .

By the law of large numbers

limN→∞ γN(k) ≈ σ2
η

Γ(q−1)
B(p,q) k

1−q cos(λk), k →∞.

Hence, yNt displays long memory with parameter d = 1− q/2 in the
covariance sense at the frequency λ.



Multiple periodicities, red noise and exogenous effects

A more general specification for periodic time series, including the possibility of a
red noise component, multiple periodicities and strongly exogenous regression
effects, is the following:

yt = β′xt + ut , t = 1, 2, . . . , n,

ut = α0t +
∑M

j=1

(
αjt cos(λj t) + α∗jt sin(λj t)

)
+ εt ,

(4)

The process α0t is the red noise component of the series, capturing low
frequency movements, formulated as

α0t = φα0,t−1 + η0t , η0t ∼ i.i.d. N(0, σ2
η0). (5)

The j-th component cycle, αjt cos(λj t) + α∗jt sin(λj t), is a Gaussian fSW
process with memory parameter dj , frequency parameter λj , disturbance error
variance σ2

ηj , and unconditional variance σ2
αj .

Finally εt is a Gaussian white noise process, εt ∼ i.i.d. N(0, σ2
ε).

The components are assumed to be mutually independent.



Maximum likelihood estimation

Let y = [y1, y2, . . . , yn]′, X = [x ′1, x
′
2, . . . , x

′
n]′, u = [u1, u2, . . . , un]′.

The linear model (4) implies the representation y = Xβ + u, with , so that
u ∼ N(0,Γn), where Γn is the Toeplitz matrix

Γn =



γ(0) γ(1) · · · · · · γ(n − 1)

γ(1) γ(0)
. . .

. . . γ(n − 2)
...

. . .
. . .

. . .
...

γ(n − 2)
. . .

. . .
. . . γ(1)

γ(n − 1) γ(n − 2) · · · γ(1) γ(0)

 ,

with elements

γ(k) = φk
σ2
η0

1− φ2
+

M∑
j=1

σ2
αj

Γ(1− dj)Γ(dj + k)

Γ(1− dj + k)Γ(dj)
cos(λjk) + I (k = 0)σ2

ε,



Let θ = (θ′0,θ
′
1, . . . ,θ

′
m, σ

2
ε)′, θ0 = (φ, σ2

η0
)′, θj = (dj , λj , σ

2
ηj )
′, j = 1, . . . ,M.

The Gaussian log-likelihood is

`(θ,β; y) = −n

2
log(2π)− 1

2
log |Γn| −

1

2
(y − Xβ)′Γ−1

n (y − Xβ)

Maximising with respect to β yields the generalized least squares estimator

β̃ = (X ′Γ−1
n X )−1X ′Γ−1

n y .

Replacing into the previous expression gives the profile likelihood

`β(θ; y) = −n

2
log(2π)− 1

2
log |Γn| −

1

2
y ′Py ,

with P = Γ−1
n − Γ−1

n X (X ′Γ−1
n X )−1X ′Γ−1

n .
The marginal likelihood of the n − p linear transformation of the data,
y∗ = A′y , which is invariant to β, where A is an (n − k)× n matrix spanning
the null space of X , i.e., it is chosen so that A(A′A)−1A′ = I −X (X ′X )−1X ′,

`(θ; y∗) = −n − p

2
log(2π)− 1

2
log |Γn| −

1

2
y ′Py − 1

2
|X ′Γ−1

n X |,

The value θ̃ maximizing is known in the literature as a REML estimator. See
Verbyla (1990). See also Doornik and Ooms (2003) for the discussion of the
merits of various likelihoods for the estimation of ARFIMA models.



The evaluation of the log-likelihood entails the inversion and the determinant
of a possibly large dimensional covariance matrix.

The Durbin–Levinson algorithm performs the factorization:

Γ−1
n = Φ′nDnΦn,

where Dn = diag
(
v−1

0 , v−1
1 , . . . , v−1

n−1

)
, vk = Var(ut |ut−1, . . . , ut−k), i.e., the

conditional variance of ut = yt − β′xt , given k past values, and

Φn =


1 0 0 · · · 0
−φ11 1 0 · · · 0
−φ22 −φ21 1 · · · 0

...
... · · ·

. . .
...

−φn−1,n−1 −φn−1,n−2 −φn−1,n−3 · · · 1

 . (6)

In an appendix we deal with the maximum likelihood estimation in the case
when the fSW process collapses to a deterministic cycle with discrete spectrum.

In the paper we also deal with Whittle likelihood estimation and compare the
two estimators by a Monte Carlo experiment.



Signal Extraction and Prediction

Consider the problem of estimating the signal s = (s1, . . . , st , . . . , sn+h)′, h ≥ 0,
where, e.g., st = αkt cos(λkt) + α∗kt sin(λkt), for a given k , conditional on θ̃ and
(y ,X ).
The optimal estimator is

ŝ = Γs,y Φ̃
′
nD̃nΦ̃n(y − X β̃)

where Γs,y = Cov(s, y) has (i , j) element

σ̃2
ηk

Γ(1− 2d̃k)Γ(d̃k + |i − j |)
Γ(1− d̃k + |i − j |)Γ(d̃k)Γ(1− d̃k)

cos(λ̃k(|i − j |)).

The minimum mean square estimator of the other components and the prediction
of yt follows straightforwardly.



Mauna Loa Atmospheric CO2 Data

The series consists of monthly atmospheric carbon dioxide measurements
collected at the summit of Mauna Loa mountain (Hawaii), dealing with
concentrations in parts per million (ppm), over the period January 1958 - June
2020 .

It is very relevant for climate change discussion, being the longest instrumental
record available of atmospheric CO2; it is also a testbed for the class of
k-factor generalized Gegenbauer processes, which have been fitted to the
second differences of the series. See Wood et al (1998) and McElroy and
Holan (2012, 2016).

The series displays important inter-annual and intra-annual movements.

Seasonality is indeed prominent, and the changes in the amplitude and phase
of the annual cycle have been the subject of a rich debate.

The seasonal cycle, which peaks in May and has a trough in October, is driven
by the metabolic activity of terrestrial plants and soils: the process of carbon
uptake and release of the land biosphere is such that CO2 concentrations
increase in winter, when plant respiration dominates, and decreases in summer,
when the photosyntesis uptake dominates.
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A significant amplitude increase was documented already by Bacastow (1985),
while Keeling et al (1996) also detected a change in the phase, implying an
advance of the seasonal cycle of about 7 days.

These references attributed the changes to global warming and longer growing
seasons.

Singular spectrum analysis of the Mauna Loa time series (Dettinger, 1998)
provided further support for the changes in the seasonal cycle.

Kaufmann (2007) identifies statistically significant variation in the anomalies
pertaining to the monthly concentrations of April and October.

Amplitude trends and phase changes reflect changes in the global carbon cycle
and its response to climate change; thus, their attribution is an important
matter of investigation, see Forkel et al (2016), Bastos et al (2019), Wang et
al (2020), for some recent contribution and discussion.



The interannual variation of CO2 concentrations has been related to the El
Niño Southern Oscillation (ENSO) phenomenon already by Bacastow (1976),
who used the Southern Oscillation Index (SOI) as a measure of ENSO.

ENSO originates in the tropical Pacific Ocean, but is one of the main drivers
of interannual global climate variability.

The correlation has been confirmed by alternative methods (Dettinger and
Ghil, 2998) and measurements (Chatterjee et al, 2017).

As highlighted by Zeng et al (2005), the strong correlation between the
interannual variation and the SOI index is quite remarkable, considering the
chain of causal links that relates the two phenomena.

Volcanic eruptions also contribute to interannual variation of CO2.

Hendry and Pretis (2013) conclude, however, that natural factors are not
sufficient to explain the changes in CO2 concentrations. They identify
significant anthropogenic contributions using an autoregressive distributed lag
model selected by a general to specific modelling approach.



Denoting yt the Mauna Loa CO2 monthly time series, we fit the model:

yt = β0 + β1t + β2t
2 + α0t +

5∑
j=1

(
αjt cos(λj t) + α∗jt sin(λj t)

)
+ α6t cos(πt).

α0t is the AR(1) red noise process (5), modelling the low-frequency variability.
The MLE of φ is 0.9998, so that the red noise process actually turns brown,
and σ̃2

η0 = 0.0212.
The seasonal component is modelled by the six fSW cycles defined at the
seasonal frequencies λj = π

6 j , j = 1, . . . , 6. The MLEs of the parameters are

j λj d̃j σ̃2
ηj σ̃2

αj

1 π/6 0.4995 0.0127 4.0165
2 π/3 0.4980 0.0041 0.3297
3 π/2 0.5000 0.0000 0.0032
4 2π/3 0.5000 0.0000 0.0027
5 5π/6 0.0569 0.0241 0.0243
6 π 0.5000 0.0000 0.0000

The broad band components are identified at the fundamental frequency (1
cycle per year), and at π/3, the semiannual frequency. The seasonal cycle at
5π/6 (2.4 cycles per year) is also estimated as a broadband component,
although it shows little persistence and variability.



The model provides a good fit: the estimated prediction error variance is
ṽn−1 = 0.0913, which represent 6.04% of the variance of ∆yt . The
standardized residuals show no significant autocorrelation, the sample
autocorrelations at lags 1 and 12 resulting 0.0052 and 0.0199, respectively, and
those of their squares being equal to 0.0120 and 0.0775.

The estimated components provide useful insight.

As a measure of interannual variability we consider ∆α0t . To investigate its
relation with the ENSO phenomenon, we compare its estimates with the SOI
index.

It could be argued that the cross-correlation is inflated by the fact that the
estimates of ∆α0t are conditional on the full available sample. To address this
point we also present the cross-correlation function of the SOI and the real
time estimates of the interannual variation in CO2.
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Seasonal changes in Mauna Loa CO2 concentrations

The overall change in amplitude during the period considered amounts to 0.5
ppm for the fundamental cycle and to 0.2 ppm for the semiannual one.

The changes imply that CO2 release in winter months has relatively increased
and uptake in summer months has declined.

The trend in the amplitude shows a deceleration after the 1980s, consistent
with Wang et al (2020), but it is subject to a more rapid increase in the recent
years.

Our estimates imply a phase advance of 20 days for the fundamental cycle.
The semiannual cycle is also subject to a phase advance, but of only 6 days.

The combined effects imply that the May annual peak becomes more
prominent with time, while September emerges as the seasonal trough.
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Cycles and Variability in Paleoclimate Data

We consider four paleoclimate time series dealing with ice cores
reconstructions of temperatures, methane (CH4), carbon dioxide (CO2)
concentrations and ice volume. The series were obtained by European Project
for Ice Core in Antartica (EPICA), and Lisiecki and Raimo (2005).

The series display substantial recurrent co-movements referred to as glacial
cycles.

According to the paleoclimatic literature and the Milankovitch theory (Hays et
al., 1976), glacial cycles are attributed to changes in Earth’s orbital geometry
over time, which affects incoming solar radiation.
The three main sources of variation are:

Eccentricity of the Earth orbit round the Sun, due to gravitational effects of
other planets in the solar system, which varies deterministically with a
periodicity of about 100 kyr.
Obliquity or tilt of the Earth’s axis of rotation, which varies with a period of 41
kyr.
Precession of the equinoxes. This component has periodicities of about 23 and
19 kyr.
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The four series have been recently investigated by Davidson et al (2016) and
Castle and Hendry (2020).

Larger cointegrated VAR systems are adopted by Kaufmann and Juselius
(2013, 2016) and Kaufmann and Pretis (2020, 2021).

A key issue deals with the role of the above three orbital components in
explaining the variability in the climate and trace gases.

It is evident from the plots that glacial cycles in the late Pleistocene occur at
intervals of 100 kyr; however, eccentricity accounts only for minor fluctuations
in the amplitude of the insolation signal. This is known as the ‘100 kyr’
problem.

Hence, the detailed mechanism by which small changes in insolation become
amplified to drive major climatic changes remains unclear.

A nonlinear response of the climate system to relatively weak eccentricity
variations has been considered. See Paillard (2001).



An important strand of the literature has aimed at quantifying the contribution
of the orbital components via a decomposition of the total variability of
paleoclimate series in the frequency domain.

This entails estimation of a possibly mixed spectrum or pseudo-spectrum, for
which purpose the use of Thomson (1982) multitaper spectral method is
prominent.

Given the deterministic nature of orbital forcing, the ability to distinguish
narrow-band (discrete spectra) components from background broad-band
components is quintessential to the identification of the components of
paleoclimate variability. See Mitchell (1976), Mann and Lees (1996), Wunsch
(2003), Meyers et al (2008), Ditlevsen et all (2020).

Our contribution to this literature is to provide an alternative parametric
approach, based on the additive model (4), to the quantification of the
components of paleoclimate variability via the spectrum.



We adopt the logarithmic transformation of the variables used by Davidson et
al (2016), namely yt = log(xt + 16) for temperatures, yt = − log(8− xt) for
ice, and yt = log(xt/100) for both CH4 and CO2, where xt denotes the
original measurement.

The model features a constant, a red noise component, and four fSW cycles
associated to the orbital frequencies λ1 = π/50 (eccentricity), λ2 = 2π/41
(obliquity), λ3 = 2π/23 and λ4 = 2π/19 (precession):

yt = β0 + α0t +
4∑

j=1

(
αjt cos(λj t) + α∗jt cos(λj t)

)
. (7)



Parameter estimates
Temp. Ice v. CH4 CO2

β̃0 2.3317 -1.3331 1.5886 0.7967
φ̃ 0.9240 0.9638 0.8705 0.9669
σ̃2
η0 0.0057 0.0005 0.0039 0.0006

d̃1 0.5000 0.5000 0.5000 0.5000
σ̃2
η1 0.0000 0.0000 0.0000 0.0000

d̃2 0.5000 0.5000 0.5000 0.5000
σ̃2
η2 0.0000 0.0000 0.0000 0.0000

d̃3 0.4695 0.4832 0.4467 0.5000
σ̃2
η3 0.0006 0.0001 0.0002 0.0000

d̃4 0.3753 0.5000 0.5000 0.5000
σ̃2
η4 0.0000 0.0000 0.0000 0.0000

Diagnostics
Temp. Ice v. CH4 CO2

p.e.v. 0.0065 0.0006 0.0042 0.0006
R2 0.9075 0.9583 0.8388 0.9559
r(1) 0.0382 0.0352 0.0323 0.3493
r(2|1) -0.0537 0.0849 -0.0081 -0.1128
rsq(1) 0.1591 0.1811 0.1640 0.2918
Skewness -0.2548 -0.3451 0.8904 0.5768
Kurtosis 4.3064 4.3159 6.6686 4.8094



Temperatures: MMSEs of the components
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Ice volume MMSEs of the components

-800 -700 -600 -500 -400 -300 -200 -100 0

-0.2

-0.1

0

0.1

0.2

-800 -700 -600 -500 -400 -300 -200 -100 0

-0.2

-0.1

0

0.1

0.2

-800 -700 -600 -500 -400 -300 -200 -100 0

-0.2

-0.1

0

0.1

0.2



Our measurement model allows the quantification of the contribution of the
components to the overall variability.

The following variance decomposition holds: Var(yt) =
∑4

j=0 σ
2
αj .

When the model is estimated by maximum likelihood, the sample counterpart
is the additive decomposition ṽ0 =

∑4
j=0 σ̃αj .

We present the contribution of the red noise component (σ̃2
α0), that of

eccentricity (σ̃2
α1), obliquity (σ̃2

α2) and precession (σ̃2
α3 + σ̃2

α4) to the total
variability for the four series (ṽ0).

The lower and upper confidence limits are obtained by generating 500
bootstrap samples according to the parametric bootstrap method presented in
the Appendix.



Decomposition of total variance: contribution of the components of variability.
Temperatures

Point est. Lower Conf. Limit Upper Conf. Limit
Red Noise 0.0392 0.0275 0.0536
Eccentricity 0.0170 0.0001 0.0529
Obliquity 0.0111 0.0000 0.0370
Precession 0.0032 0.0001 0.0080
Total Variance 0.0705 0.0407 0.1084

Ice Volume
Point est. Lower Conf. Limit Upper Conf. Limit

Red Noise 0.0064 0.0040 0.0096
Eccentricity 0.0047 0.0001 0.0162
Obliquity 0.0024 0.0001 0.0070
Precession 0.0011 0.0002 0.0030
Total Variance 0.0147 0.0073 0.0271



CH4

Point est. Lower Conf. Limit Upper Conf. Limit
Red Noise 0.0160 0.0119 0.0207
Eccentricity 0.0064 0.0001 0.0196
Obliquity 0.0027 0.0000 0.0089
Precession 0.0010 0.0000 0.0029
Total Variance 0.0261 0.0159 0.0416

CO2

Point est. Lower Conf. Limit Upper Conf. Limit
Red Noise 0.0093 0.0056 0.0142
Eccentricity 0.0038 0.0001 0.0116
Obliquity 0.0006 0.0000 0.0019
Precession 0.0001 0.0000 0.0004
Total Variance 0.0138 0.0072 0.0219



The red noise component accounts for 55.60%, 43.54%, 61.30% and 67.39%
of the variance, respectively for temperatures, ice, CH4 and CO2.

These estimates are somewhat above the corresponding estimates for
temperature proxy records from the Vostok ice cores obtained by Meyers et al
(2008). To explain the difference we notice that we estimate the spectrum of
eccentricity and obliquity as a line spectrum, whereas they integrate the
multitaper spectral density estimate across a neighbourhood of frequencies
around the 100 and 41 kyr frequencies.

Our estimates are more in line with Wunsch (2003), who questions the notion
that paleoclimate variability is predominantly associated with the frequency
bands attributed to solar insolation.

However, this is not quite the end of the story, as the red noise could may also
result from the climate response to orbital forcing: the path from the orbital
signal to climate and trace gases proxy records goes through several steps,
outlined in Meyers et al (2008), and possibly nonlinear and persistent transfer
functions can be responsible for the dominance of the stochastic red noise
component. A model of low frequency variation featuring hysteresis, such as
α0t = φα0,t−1 + α1t cos(λ1t) + α∗1t sin(λ1t) + η0t , cannot be ruled out.



Conclusions

The paper has proposed a novel time series model for persistent cycles, the
fractional sinusoidal waveform (fSW) process.

The model features stationary cyclical long memory and collapses to a line
spectrum component when the parameters are on the boundary of their
admissible range.

Hence, it is suitable to analyze time series with mixed spectra.

Likelihood inference and optimal signal extraction were discussed with
reference to an additive model combining a broadband continuum component
of variability with a number of fSW process.

The application to carbon dioxide concentration and paleoclimate time series
have illustrated that the model can address some important questions raised
with respect to the quantification of feature changes and the contribution to
the total variability of deterministic forcing due to solar radiation.
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