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Climate Econometrics

“Global warming begins and ends with human activities.”
— William Nordhaus (2013), 2018 Nobel Laureate

» Economic activity drives emissions
(Nordhaus, 1991; inter alia)

» Emissions and accumulations influence the climate system
“A number of studies have applied [econometric] methods...
to assess the evidence for a causal link between external
drivers of climate and observed climate change.... The
advantage... is that they do not depend on the accuracy of
any complex global climate model...." (Intergovernmental
Panel in Climate Change Fifth Assessment Report, 2013).

» Climate change has economic costs
(Burke et al., 2015; Hsiang et al., 2017; inter alia)



Our Base Model: Structural VAR

Structural VAR (SVAR)
» Workhorse of empirical macroeconomics for decades
» Requires only ...

> ... simple statistical estimation of a system of equations
> ... identification based on plausible theory

» Allows dynamic feedbacks in economic systems
> Isolates effects of specific innovations on specific series

Functional SVAR

» Allows distributional dynamic feedbacks

P Isolates temporal effects of structural shocks on
spatial distributions



VARs in Climate Science?

Reduced-Form VARs in Climate Science
» IPCC (2013): Statistical time series techniques are useful

» Cointegrated reduced-form VARs have been used extensively:

Kaufmann and Stern (2002), Kaufmann et al. (2006a,b,
2010), Kaufmann and Juselius (2013, 2016), Pretis (2019)

Structural VARs in Climate Science

> Effects of specific series are of key interest:

Especially natural vs. anthropogenic drivers of climate change
» Climate systems have nonlinear dynamic feedbacks

> VARs are useful to identify macroeconomic policy effects,
so might they be useful to identify climate policy effects

» SVARs underutilized in climate science



Shocks and Temperature Distribution

We analyze the effects of global economic activity and
anthropogenic forcings (greenhouses gases and tropospheric
aerosols) net of natural forcings (solar and volcanic activity) on the
climate system.

» What are the empirical contributions of shocks in postulated
drivers of climate change on global mean temperatures?

» How do shocks in such drivers affect fluctuations in aspects of
temperature distribution other than the mean?

» Do shocks to global real economic activity affect the
temperature anomaly distribution?

» Which shocks have the largest and/or most permanent effects
on variations in temperature distribution?

» Do temperature shocks feedback to economic activity?



Outline of the Rest of the Talk

I. Functional Analysis & Autoregression
I.A Some Basics of Functional Analysis
I.B Functional Autoregression (FVAR)

Il. Functional SVAR with Temperature Anomalies
I1.A Model & Characteristics of the Data
[1.B Conventional SVAR with Temperature Aggregates
I1.C FSVAR: Impulse Responses
I1.D FSVAR: Forecast Error Variance Decompositions
II.E FSVAR: Historical Decompositions

I1l. Some Takeaways



|. Functional Analysis

& Autoregression



Distributional Dynamics

New framework and methodology are introduced to
» analyze distributional dynamics of the time series of global
temperature anomaly distributions, and

» study the effects of various natural and anthropogenic shocks
to the climate system.

In particular, we aim to disentangle effects on the global
distribution of temperature anomalies, net of solar and volcanic
activity, of shocks to

» global real economic activity (production),

» accumulation of greenhouse gases, and

» tropospheric aerosols resulting from sulfate emissions.



Densities of Temperature Anomalies

Temperature Distribution from 1850 to 2019

Year

LU ) Temperature



Hilbert-Valued Random Variables

Let
w: QO — H

where H is a Hilbert space. For w,v € H, we denote by (w,v)
and ||w|| the inner product and norm defined for H.

Hilbert-valued random variables include

» Real random variables: H = R with
Euclidean inner product (w,v) = wv

» Vector-valued random variables:H = R with
Euclidean inner product (w,v) = w'v = SN | wv;

» Function-valued random variables: H = L?(R) with
L? inner product (w,v) = [v(s)w(s)ds



Mean and Variance Operator

The mean Ew of a random variable in H is defined as an element
in H satisfying
(v, Ew) = E(v, w)

for all v € H, which exists if E|lw|| < oo.

For w such that Ew = 0, the variance E(w ® w) of w is given by
an operator for which

E(u, w){w,v) = (u, E(w @ w)v)

for all u,v € H, which exists if E||w]||? < cc.

» For a finite dimensional w, w ® w reduces to ww’, and
E(w ® w) reduces to Ewuw'.



Representation and Implementation

Let H = L*(R) and (w;) be a sequence of square integrable
random functions. Since L%(R) is separable, we may write (w;) as

o0

we = o

i=1
for any orthonormal basis (v;) of L*(R).

We use the functional principal component basis to interpret (v;)
as factors and ({v;, w;)) as factor loadings.



A Mixture of VAR and FVAR

Our subsequent model will consist of

» Two exogenous global variables: natural drivers of climate
change

» Three endogenous global variables: a proxy for economic
activity, two anthropogenic drivers of climate change

» One endogenous functional variable: density of temperature
anomalies

Ignoring the exogenous variables for now, our model includes both
scalar variables and functional variables, and we let

» z;: n-dimensional vector of endogenous global variables

» f;: an endogenous functional variable

more explicitly.



Product Space

Define
Gt = (Zta ft)

which we regard as a time series of random elements taking values
in the product space H = R™ x H. We denote by (-,-) and || - ||
the inner product and norm defined for H.

We endow H = R™ x H with the usual inner product and norm,
(+,-) and || - ||, for the product space, which are given by

(Cuwyn=2"y+(f.g) and [¢lf3 =2"2+|f|

for ( = (z, f) and w = (y, 9).



Extended FVAR & Mixture Representation

In the simplest case, let ((;) be generated by a FVAR(1) as

Gt = AGi—1 + &4,

where A is a compact linear operator in H = R"™ x H, or
equivalently by

2 =Anzi—1+ Aiafi1 +¢f
fr=Aonz—1+ Asafi1 + 6{,

where A11 : R™ —» R?, A12 :H — R", A21 :R" — H and
Agg : H — H are bounded linear operators. Here (¢;) are random
elements in H = R™ x H defined as

&t = (55751{)

with reduced form errors (¢5) and (5{) corresponding to (z;) and
(ft), respectively.



Identification

We define (n + 1)-dimensional structural shocks (e;) as
e = (ef’,e,{)’, and let

where
B:R"W' S H=R"xH

is a bounded linear impact operator. For identification of the
structural shocks (e;), the operator B is specified with restrictions.

Let
Y= E(€t & é‘t).

The operator B is identified if and only if there exists a unique B
such that (i) B satisfies the given restrictions, and (ii) ¥ = BB*
(B* is the adjoint of B).



Finite-Order Approximation, Part |

We let
var(gf) = E(a{ ® 5{),

and denote by (\;, v;) the pairs of eigenvalues A\; > A9 > --- and
corresponding eigenvectors vq, vo, ... of var (51{) Furthermore, we
let

H,, =span{vi,...,vm},
and let II,, be the projection on H,,.

We approximate B by B,, : R®*! — #,, = R" x H,, defined by

(nien )= ()

where B, is an element of the product basis given by the standard
basis of R" and vy,...,v,, of H.



Finite-Order Approximation, Part Il

Define
(v1, )

T @ U :
(U, [ 0)

for any v € H, so that 7, is an isometry between H,, and R™.

Using the isometry, we may write

(e ) =22 ()

where B, is redefined to be an (n +m) x (n + 1) matrix.

Note: (7, mm(e])) is an (n + m)-vector of fitted residuals from a
reduced-form VAR using 7, (ft).



Implementation

We write

a
(i)~ S

where (p;,w;) are the pairs of eigenvalues p; > -+ > 44 and
corresponding eigenvectors wy, . . ., Wy of var (e7, mm(el)'Y,

t
and define
n+1

S =Y, pii(wiw})
i=1

which is an (n + m)-dimensional square matrix of rank (n + 1).

Now we may find B, such that ¥, = B,,B,,. For By, to be
unique, we need to have n(n + 1)/2 restrictions — i.e., the number
of restrictions required to just identify an SVAR consisting of

(n + 1) variables. Specifically, we find a matrix B,,, that minimizes
|12 — BBy, |-



Il. Functional SVAR with

Temperature Anomalies



Time Series of Interest

Consider the vectors

xy = (Sy, V;)' (strictly exogenous)
and
2z = (Yy, Gy, Ay, Ty)', (endogenous)

where

: Solar activity (W/m?),

: Stratospheric aerosols from volcanic activity (W/m?),
: Global economic production (log 2010 US$T),

: Greenhouse gas concentration (W/m?),

: Tropospheric aerosols and land use (W/m?), and

vVvYvyVvyVvyy
H 2 QXK < ®

: Temperature anomaly (°C).



Stuctural VAR Models and Data

» Conventional Aggregate Structural VAR (SVAR)

» Two exogenous global variables: S,V
» Four endogenous global variables: Y, G, A, HadT

» Functional Structural VAR (FSVAR)

> Two exogenous global variables: S,V

» Three endogenous global variables: Y, G, A

» One endogenous functional variable: FTemp,
demeaned spatial densities of temperature anomalies

» Data Sources (1850-2019):

» T :HadCRUT.5.0.1.0 (Morice et al., 2021)

» S,V,G, A : Hansen et al. (2017), updated to 2019 using
data from NOAA and NASA

> Y : World Bank data back to 1960, annualized back to
1850 using Maddison Project Database 2020



Annual Time Series
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Densities of Temperature Anomalies

Temperature Distribution from 1850 to 2019

Year

LU ) Temperature



Temporally Demeaned Densities of Anomalies

Demeaned Temperature Distribution from 1850 to 2019

250

LU ) Temperature



Cumulative Scree Plot

sssss

Three leading factors explain 98% of the variations in the time

series of temperature distributions.



First Factor

First Factor Loading _
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Second Factor

Second Factor Loading
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Third Factor
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Aggregate Climate SVAR

We postulate that (z;) evolves according to

p q
Aoz = p+ Z Aiz—i + Z CiTy—i + ey,

i=1 k=0
with 4 x 4 matrices Ag, A1,..., Ay and 4 x 2 matrices
Co,Ch,...,Cq, and where (Z;) is a series of fitted residuals from

fitting (z;) to a VAR. (Lag orders chosen by BIC.)

Reduced form errors (g;) relate to structural errors (e;) by
—1
&t = A() €t,

where Aal corresponds to B, above.

Note: p and initial condition may “soak up” long-run relationships.



|dentifiying an SVAR

We postulate a structure on Aal given by

ey ayy 0 0 0 e

e = ei _ | agy acc 0 0 eg — A 1 e
€t asy aAG aAA 0 €
EtT ary arGg araA arr €tT

On impact, innovations in ...

>

vVvyvyVvVvyy

aqy,aay 7 0: ... production = emissions

ary # 0: ... production = temperature

ayg,aya = 0: ... emissions - production

ayr = 0: ... but temperature = production! (not ideal)
ara,ara # 0 : ... emissions # temperature

aga = 0: ... emissions # each other, but a4 unrestricted

agt,aar = 0: ... temperature #- emissions



Aggregate SVAR: Impulse Responses Analysis
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Results: Conventional SVAR

Not surprisingly, all structural shocks impact their own series. The
impact is permanent for Y, G, and A, but less so for T'.

A few more insights...
> “beginning”

> el /G (expected, but not significant)
> e} \, A (expected, significant)

> “end”
» el Y (expected, but not significant)
> “murky middle”

> e \\G,Y (unexpected)
> e 7T (expected, significant on impact, after 6 yrs)
> e \, T (wrong sign, not significant)



A Novel Functional Structural VAR Model

Two Global Exogenous Variables:

» S: Solar activity,

» V' Stratospheric aerosols from volcanic activity

Three Global Endogenous Variables:

> Y Global economic production
> G: Greenhouse gas concentration

» A: Tropospheric aerosols and land use

One Functional Variable:

» FTemp: Densities of temperature anomaly distribution



FSVAR: IRFs

» First: Impulse response function surfaces of the functional
variable along with the impulse response functions (IRFs) of
the three aggregate endogenous variables in response to the
four structural shocks identified.

» Next: Slices of the IRF surfaces of the functional variables
observed at 10 different horizons h from impact to twelve
years later



FSVAR: IRFs
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FSVAR: Interpretations of the IRFs

> “beginning”

> e ' G (expected, now significant)
> el \, A (expected, still significant)

> ‘“end”
» el Y (expected, now significant)
> “murky middle”
> e (G, ef (A, e MY (unexpected)
» Speculation: persistent measurement error

> e AT, et /T (significant? yes, next few slides)



Responses of Temperature Distribution to Y Shock
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Responses of Temperature Distribution to G Shock
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Responses of Temperature Distribution to A Shock
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Responses of Temperature Distribution to 7" Shock
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FSVAR: FEVDs

» First: Forecast error variance decomspoistion (FEVDs) of the
three aggregate endogenous variables, Y, G, A

» What explains unexpected movements in these series?

> Next: FEVDs of the functional variable at six key temperature
anomalies:

» -5.300, -4.216, -2.586, 0.130, 2.846, 4.476
(minimum; 10", 25" 50" 75t" 90" percentiles)



FEVD

of Aggregate Variables, Y, G, and A
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Results: FEVD of Aggregate Variables

» Shocks to Y account for much/most of the variation in
forecast error of all three variables

» Shocks to A and T account for almost none
» Why do shocks to Y'n account for more of the variation in
forecast error of A than of G7?

» ( is highly persistent in the atmosphere, while A is not
> A relates to emissions, while G relates to cumulative
emissions



FEVD of Functional Var F'T'emp at Specific Values

VD of Temp -5.30 VD of Temp -4.22 VD of Temp -2.59

VD of Temp 0.13 VD of Temp 2.84 VD of Temp 4.48

Each panel presents FEVD of FTemp at a specific value indicated on top.



Results: FEVD of Functional Variable

» Shocks to Y account for almost none of the variation in
forecast error in the frequency of any temperature anomaly

» Shocks to A account for almost none or up to about 20%

» Shocks to (G account for most of the variation in forecast
error of frequency of anomalies above the median (0.13°C)

» Residuals shocks to 1" account for most of the variation in
forecast error of frequency of anomalies at or below the
median



FSVAR: Historical Decomposition

» First: Historical decompositions (HDs) of the three aggregate
variables, Y, G, and A.

> Next: HD of the functional variable at three key temperature
anomalies:

> -4.216, 4.476, 0.130 (10", 90", 50" percentiles)



Historical Decomposition of Y
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Historical Decomposition of G
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Historical Decomposition of A
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Results: HD of Aggregate Variables

> Most salient in all three are the long-run effects,
effects of initial conditions and conditional means

» Net of these, production shocks primarily drive all three
aggregate variables (Y, G, A)

» — Economic activity drives emissions
» Temperature shocks secondarily drive all three variables

» — Evidence of a short-run negative feedback loop



Historical Decomposition of FTemp: 10" Percentile




Historical Decomposition of FTemp: 90" Percentile
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Historical Decomposition of F'T'emp: Median
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Results: HD of Functional Variables

» 10" and 90" percentiles mainly driven by exogenous shocks;
relatively small long-run movement

» Median anomaly (near zero) shows a steady long-run increase

» All anomalies show substantial fluctuations from shocks to Y:

» decreasing density below the median anomaly
P increasing density above the median anomaly

» Residual (temperature shocks) also important in short-run



Some Takeaways

» We introduce a functional SVAR that is a mixture of a
traditional VAR and pure functional VAR with identified
structural errors.

» Estimation is accomplished using functional principal
components which then allow tradition VAR techniques.

» Applying the FSVAR to a model of the climate system shows

> effects of shocks to economic activity on climate forcings
from greenhouse gases and tropospheric aerosols,

> effects of shocks to these series on temperature
distributions, primarily increasing mean, possibly
decreasing skewness, and

> effects of shocks in temperature decrease economic
activity.
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