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Climate Econometrics

“Global warming begins and ends with human activities.”

– William Nordhaus (2013), 2018 Nobel Laureate

I Economic activity drives emissions
(Nordhaus, 1991; inter alia)

I Emissions and accumulations influence the climate system
“A number of studies have applied [econometric] methods...
to assess the evidence for a causal link between external
drivers of climate and observed climate change.... The
advantage... is that they do not depend on the accuracy of
any complex global climate model....” (Intergovernmental
Panel in Climate Change Fifth Assessment Report, 2013).

I Climate change has economic costs
(Burke et al., 2015; Hsiang et al., 2017; inter alia)



Our Base Model: Structural VAR

Structural VAR (SVAR)

I Workhorse of empirical macroeconomics for decades

I Requires only ...

I ... simple statistical estimation of a system of equations
I ... identification based on plausible theory

I Allows dynamic feedbacks in economic systems

I Isolates effects of specific innovations on specific series

Functional SVAR

I Allows distributional dynamic feedbacks

I Isolates temporal effects of structural shocks on
spatial distributions



VARs in Climate Science?

Reduced-Form VARs in Climate Science

I IPCC (2013): Statistical time series techniques are useful

I Cointegrated reduced-form VARs have been used extensively:

Kaufmann and Stern (2002), Kaufmann et al. (2006a,b,
2010), Kaufmann and Juselius (2013, 2016), Pretis (2019)

Structural VARs in Climate Science

I Effects of specific series are of key interest:

Especially natural vs. anthropogenic drivers of climate change

I Climate systems have nonlinear dynamic feedbacks

I VARs are useful to identify macroeconomic policy effects,
so might they be useful to identify climate policy effects

I SVARs underutilized in climate science



Shocks and Temperature Distribution

We analyze the effects of global economic activity and
anthropogenic forcings (greenhouses gases and tropospheric
aerosols) net of natural forcings (solar and volcanic activity) on the
climate system.

I What are the empirical contributions of shocks in postulated
drivers of climate change on global mean temperatures?

I How do shocks in such drivers affect fluctuations in aspects of
temperature distribution other than the mean?

I Do shocks to global real economic activity affect the
temperature anomaly distribution?

I Which shocks have the largest and/or most permanent effects
on variations in temperature distribution?

I Do temperature shocks feedback to economic activity?



Outline of the Rest of the Talk

I. Functional Analysis & Autoregression
I.A Some Basics of Functional Analysis
I.B Functional Autoregression (FVAR)

II. Functional SVAR with Temperature Anomalies
II.A Model & Characteristics of the Data
II.B Conventional SVAR with Temperature Aggregates
II.C FSVAR: Impulse Responses
II.D FSVAR: Forecast Error Variance Decompositions
II.E FSVAR: Historical Decompositions

III. Some Takeaways



I. Functional Analysis

& Autoregression



Distributional Dynamics

New framework and methodology are introduced to

I analyze distributional dynamics of the time series of global
temperature anomaly distributions, and

I study the effects of various natural and anthropogenic shocks
to the climate system.

In particular, we aim to disentangle effects on the global
distribution of temperature anomalies, net of solar and volcanic
activity, of shocks to

I global real economic activity (production),

I accumulation of greenhouse gases, and

I tropospheric aerosols resulting from sulfate emissions.



Densities of Temperature Anomalies



Hilbert-Valued Random Variables

Let
w : Ω→ H

where H is a Hilbert space. For w, v ∈ H, we denote by 〈w, v〉
and ‖w‖ the inner product and norm defined for H.

Hilbert-valued random variables include

I Real random variables: H = R with
Euclidean inner product 〈w, v〉 = wv

I Vector-valued random variables:H = RN with
Euclidean inner product 〈w, v〉 = w′v =

∑N
i=1wivi

I Function-valued random variables: H = L2(R) with
L2 inner product 〈w, v〉 =

∫
v(s)w(s)ds



Mean and Variance Operator

The mean Ew of a random variable in H is defined as an element
in H satisfying

〈v,Ew〉 = E〈v, w〉

for all v ∈ H, which exists if E‖w‖ <∞.

For w such that Ew = 0, the variance E(w ⊗ w) of w is given by
an operator for which

E〈u,w〉〈w, v〉 = 〈u,E(w ⊗ w)v〉

for all u, v ∈ H, which exists if E‖w‖2 <∞.

I For a finite dimensional w, w ⊗ w reduces to ww′, and
E(w ⊗ w) reduces to Eww′.



Representation and Implementation

Let H = L2(R) and (wt) be a sequence of square integrable
random functions. Since L2(R) is separable, we may write (wt) as

wt =

∞∑
i=1

〈vi, wt〉vi

for any orthonormal basis (vi) of L2(R).

We use the functional principal component basis to interpret (vi)
as factors and (〈vi, wt〉) as factor loadings.



A Mixture of VAR and FVAR

Our subsequent model will consist of

I Two exogenous global variables: natural drivers of climate
change

I Three endogenous global variables: a proxy for economic
activity, two anthropogenic drivers of climate change

I One endogenous functional variable: density of temperature
anomalies

Ignoring the exogenous variables for now, our model includes both
scalar variables and functional variables, and we let

I zt: n-dimensional vector of endogenous global variables

I ft: an endogenous functional variable

more explicitly.



Product Space

Define
ζt = (zt, ft)

which we regard as a time series of random elements taking values
in the product space H = Rn ×H. We denote by 〈·, ·〉 and ‖ · ‖
the inner product and norm defined for H.

We endow H = Rn ×H with the usual inner product and norm,
〈·, ·〉H and ‖ · ‖H, for the product space, which are given by

〈ζ, w〉H = z′y + 〈f, g〉 and ‖ζ‖2H = z′z + ‖f‖2

for ζ = (z, f) and w = (y, g).



Extended FVAR & Mixture Representation

In the simplest case, let (ζt) be generated by a FVAR(1) as

ζt = Aζt−1 + εt,

where A is a compact linear operator in H = Rn ×H, or
equivalently by

zt = A11zt−1 +A12ft−1 + εzt

ft = A21zt−1 +A22ft−1 + εft ,

where A11 : Rn → Rn, A12 : H → Rn, A21 : Rn → H and
A22 : H → H are bounded linear operators. Here (εt) are random
elements in H = Rn ×H defined as

εt = (εzt , ε
f
t )

with reduced form errors (εzt ) and (εft ) corresponding to (zt) and
(ft), respectively.



Identification

We define (n+ 1)-dimensional structural shocks (et) as

et = (ez′t , e
f
t )′, and let(

εzt
εft

)
= B

(
ezt
eft

)
,

where
B : Rn+1 → H = Rn ×H

is a bounded linear impact operator. For identification of the
structural shocks (et), the operator B is specified with restrictions.

Let
Σ = E(εt ⊗ εt).

The operator B is identified if and only if there exists a unique B
such that (i) B satisfies the given restrictions, and (ii) Σ = BB∗

(B∗ is the adjoint of B).



Finite-Order Approximation, Part I

We let
var (εft ) = E

(
εft ⊗ ε

f
t

)
,

and denote by (λi, vi) the pairs of eigenvalues λ1 > λ2 > · · · and

corresponding eigenvectors v1, v2, . . . of var (εft ). Furthermore, we
let

Hm = span
{
v1, . . . , vm

}
,

and let Πm be the projection on Hm.

We approximate B by Bm : Rn+1 → Hm = Rn ×Hm defined by(
εzt

Πm(εft )

)
= Bm

(
ezt
eft

)
where Bm is an element of the product basis given by the standard
basis of Rn and v1, . . . , vm of H.



Finite-Order Approximation, Part II

Define

πm : v 7→

 〈v1,Πmv〉
...

〈vm,Πmv〉


for any v ∈ H, so that πm is an isometry between Hm and Rm.

Using the isometry, we may write(
εzt

πm(εft )

)
= Bm

(
ezt
eft

)
where Bm is redefined to be an (n+m)× (n+ 1) matrix.

Note: (εz′t , πm(εft )′)′ is an (n+m)-vector of fitted residuals from a
reduced-form VAR using πm(ft).



Implementation

We write

var

(
εzt

πm(εft )

)
=

∞∑
i=1

µi(wiw
′
i),

where (µi, wi) are the pairs of eigenvalues µ1 > · · · > µn+m and

corresponding eigenvectors w1, . . . , wn+m of var (εz′t , πm(εft )′)′,
and define

Σm =

n+1∑
i=1

µi(wiw
′
i),

which is an (n+m)-dimensional square matrix of rank (n+ 1).

Now we may find Bm such that Σm = BmB
′
m. For Bm to be

unique, we need to have n(n+ 1)/2 restrictions – i.e., the number
of restrictions required to just identify an SVAR consisting of
(n+ 1) variables. Specifically, we find a matrix Bm that minimizes
||Σm −BmB

′
m||.



II. Functional SVAR with

Temperature Anomalies



Time Series of Interest

Consider the vectors

xt = (St, Vt)
′ (strictly exogenous)

and
zt = (Yt, Gt, At, Tt)

′, (endogenous)

where

I S : Solar activity (W/m2),

I V : Stratospheric aerosols from volcanic activity (W/m2),

I Y : Global economic production (log 2010 US$T),

I G : Greenhouse gas concentration (W/m2),

I A : Tropospheric aerosols and land use (W/m2), and

I T : Temperature anomaly (◦C).



Stuctural VAR Models and Data

I Conventional Aggregate Structural VAR (SVAR)

I Two exogenous global variables: S, V
I Four endogenous global variables: Y,G,A,HadT

I Functional Structural VAR (FSVAR)

I Two exogenous global variables: S, V
I Three endogenous global variables: Y,G,A
I One endogenous functional variable: FTemp,

demeaned spatial densities of temperature anomalies

I Data Sources (1850-2019):

I T : HadCRUT.5.0.1.0 (Morice et al., 2021)
I S, V,G,A : Hansen et al. (2017), updated to 2019 using

data from NOAA and NASA
I Y : World Bank data back to 1960, annualized back to

1850 using Maddison Project Database 2020



Annual Time Series



Densities of Temperature Anomalies



Temporally Demeaned Densities of Anomalies



Cumulative Scree Plot

Three leading factors explain 98% of the variations in the time
series of temperature distributions.



First Factor

1st factor: (+) on anomalies > median, (−) on < median
=⇒ positive loading increases mean & skewness



Second Factor

2nd factor: (+) on anomalies near mode, (−) otherwise
=⇒ positive loading decreases variance, kurtosis



Third Factor

3rd factor: positive loading appears to increase skewness



Aggregate Climate SVAR

We postulate that (zt) evolves according to

A0zt = µ+

p∑
i=1

Aizt−i +

q∑
k=0

Cix̃t−k + et,

with 4× 4 matrices A0, A1, . . . , Ap and 4× 2 matrices
C0, C1, . . . , Cq, and where (x̃t) is a series of fitted residuals from
fitting (xt) to a VAR. (Lag orders chosen by BIC.)

Reduced form errors (εt) relate to structural errors (et) by

εt = A−10 et,

where A−10 corresponds to Bm above.

Note: µ and initial condition may “soak up” long-run relationships.



Identifiying an SVAR

We postulate a structure on A−10 given by

εt =


εYt
εGt
εAt
εTt

 =


aY Y 0 0 0
aGY aGG 0 0
aAY aAG aAA 0
aTY aTG aTA aTT



eYt
eGt
eAt
eTt

 = A−10 et

On impact, innovations in ...

I aGY , aAY 6= 0 : ... production ⇒ emissions

I aTY 6= 0 : ... production ⇒ temperature

I aY G, aY A = 0 : ... emissions ; production

I aY T = 0 : ... but temperature ⇒ production! (not ideal)

I aTG, aTA 6= 0 : ... emissions ; temperature

I aGA = 0 : ... emissions ; each other, but aAG unrestricted

I aGT , aAT = 0 : ... temperature ; emissions



Aggregate SVAR: Impulse Responses Analysis

90% intervals estimates shown here and henceforth.



Results: Conventional SVAR

Not surprisingly, all structural shocks impact their own series. The
impact is permanent for Y , G, and A, but less so for T .

A few more insights...

I “beginning”

I eYt ↗ G (expected, but not significant)
I eYt ↘ A (expected, significant)

I “end”

I eTt ↘ Y (expected, but not significant)

I “murky middle”

I eAt ↘ G, Y (unexpected)
I eGt ↗ T (expected, significant on impact, after 6 yrs)
I eAt ↘ T (wrong sign, not significant)



A Novel Functional Structural VAR Model

Two Global Exogenous Variables:

I S: Solar activity,

I V : Stratospheric aerosols from volcanic activity

Three Global Endogenous Variables:

I Y : Global economic production

I G: Greenhouse gas concentration

I A: Tropospheric aerosols and land use

One Functional Variable:

I FTemp: Densities of temperature anomaly distribution



FSVAR: IRFs

I First: Impulse response function surfaces of the functional
variable along with the impulse response functions (IRFs) of
the three aggregate endogenous variables in response to the
four structural shocks identified.

I Next: Slices of the IRF surfaces of the functional variables
observed at 10 different horizons h from impact to twelve
years later



FSVAR: IRFs



FSVAR: Interpretations of the IRFs

I “beginning”

I eYt ↗ G (expected, now significant)
I eYt ↘ A (expected, still significant)

I “end”

I eTt ↘ Y (expected, now significant)

I “murky middle”

I eAt ↘ G, eGt ↘ A, eGt ↗ Y (unexpected)

I Speculation: persistent measurement error

I eGt ↗ T , eAt ↗ T (significant? yes, next few slides)



Responses of Temperature Distribution to Y Shock

eYt :↘ mean on impact; ↗ variance, ↘ skewness at 3-8 years



Responses of Temperature Distribution to G Shock

eGt :↗ mean on impact and for 1-2 years



Responses of Temperature Distribution to A Shock

eAt :↗ mean, ↘ skewness on impact and for a few years



Responses of Temperature Distribution to T Shock

eTt :↗ mean on impact and for a few years



FSVAR: FEVDs

I First: Forecast error variance decomspoistion (FEVDs) of the
three aggregate endogenous variables, Y , G, A

I What explains unexpected movements in these series?

I Next: FEVDs of the functional variable at six key temperature
anomalies:

I -5.300, -4.216, -2.586, 0.130, 2.846, 4.476
(minimum; 10th, 25th, 50th, 75th, 90th percentiles)



FEVD of Aggregate Variables, Y , G, and A



Results: FEVD of Aggregate Variables

I Shocks to Y account for much/most of the variation in
forecast error of all three variables

I Shocks to A and T account for almost none

I Why do shocks to Y n account for more of the variation in
forecast error of A than of G?

I G is highly persistent in the atmosphere, while A is not
I A relates to emissions, while G relates to cumulative

emissions



FEVD of Functional Var FTemp at Specific Values

Each panel presents FEVD of FTemp at a specific value indicated on top.



Results: FEVD of Functional Variable

I Shocks to Y account for almost none of the variation in
forecast error in the frequency of any temperature anomaly

I Shocks to A account for almost none or up to about 20%

I Shocks to G account for most of the variation in forecast
error of frequency of anomalies above the median (0.13◦C)

I Residuals shocks to T account for most of the variation in
forecast error of frequency of anomalies at or below the
median



FSVAR: Historical Decomposition

I First: Historical decompositions (HDs) of the three aggregate
variables, Y , G, and A.

I Next: HD of the functional variable at three key temperature
anomalies:

I -4.216, 4.476, 0.130 (10th, 90th, 50th percentiles)



Historical Decomposition of Y



Historical Decomposition of G



Historical Decomposition of A



Results: HD of Aggregate Variables

I Most salient in all three are the long-run effects,
effects of initial conditions and conditional means

I Net of these, production shocks primarily drive all three
aggregate variables (Y , G, A)

I =⇒ Economic activity drives emissions

I Temperature shocks secondarily drive all three variables

I =⇒ Evidence of a short-run negative feedback loop



Historical Decomposition of FTemp: 10th Percentile



Historical Decomposition of FTemp: 90th Percentile



Historical Decomposition of FTemp: Median



Results: HD of Functional Variables

I 10th and 90th percentiles mainly driven by exogenous shocks;
relatively small long-run movement

I Median anomaly (near zero) shows a steady long-run increase

I All anomalies show substantial fluctuations from shocks to Y :

I decreasing density below the median anomaly
I increasing density above the median anomaly

I Residual (temperature shocks) also important in short-run



Some Takeaways

I We introduce a functional SVAR that is a mixture of a
traditional VAR and pure functional VAR with identified
structural errors.

I Estimation is accomplished using functional principal
components which then allow tradition VAR techniques.

I Applying the FSVAR to a model of the climate system shows

I effects of shocks to economic activity on climate forcings
from greenhouse gases and tropospheric aerosols,

I effects of shocks to these series on temperature
distributions, primarily increasing mean, possibly
decreasing skewness, and

I effects of shocks in temperature decrease economic
activity.
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