A STATISTICAL MODEL OF THE GLOBAL CARBON BUDGET

Mikkel Bennedsen
Aarhus Universitet
and CREATES

Eric Hillebrand
Aarhus Universitet
and CREATES

Siem Jan Koopman
Vrije Universiteit Amsterdam
and CREATES

CLIMATE ECONOMETRICS VIRTUAL SEMINAR SERIES
15. DECEMBER 2020
GLOBAL CARBON CYCLE

Friedlingsstein et al. (2019), The global carbon budget 2019, Earth System Science Data 11(4), 1783-1838

www.globalcarbonproject.org
OUTLINE OF THE TALK

1. Models for the components of the global carbon budget
2. The dynamics of atmospheric concentrations C
3. The system model
4. Estimation: Residual diagnostics, Residual processes, Parameter estimates
5. Simulation
6. Discussion: Budget imbalance, airborne fraction, sink rate
7. Nowcasts and forecasts
8. Projections: Long-term scenarios until 2100
9. Conclusions
ANTHROPOGENIC EMISSIONS

\[\Delta E_t = 0.12 \pm 0.02 + \eta_{5,t} \]
\[\eta_{5,t} \sim N(0, 0.026) \]

\[\Delta E_t = 3.15 \pm 0.30 \Delta \log GDP_{t \text{world}} - 0.11 \pm 0.08 I_{1973} - 0.18 \pm 0.08 I_{1980} - 0.25 \pm 0.08 I_{1991} - 0.65 \pm 0.18 I_{1997} + \eta_{5,t} \]
\[\eta_{5,t} \sim N(0, 0.006) \]

\[\Delta \log GDP_{t \text{world}} \approx 0.034 \]
SINKS LINEAR IN CONCENTRATIONS

\[S_{LND_t} = \beta \log \left(\frac{C_t}{C_0} \right) \]

\(C_0 \) pre-industrial concentration 593GtC or 279ppm

\[S_{LND_t} = \frac{a(C_t - C_b)}{1 + b(C_t - C_b)} \]

\(C_b = 80\text{GtC NPP−zerolevel}, a, b > 0 \)

\[S_{OCN_t} = k_o(pCO2_t^a - pCO2_t^b) \]

Joos et al. (1996, 2001)
Meinshausen et al. (2011)
LAND SINK

\[S_{LN}D_t = \frac{7.23}{0.88} \frac{C_t}{C_0} \]

\[S_{LN}D_t = \frac{7.20}{0.90} \frac{C_t}{C_0} + 0.57 \times 0.12 SOI_t \]

“Moisture sensitivities of both productivity and decomposition are important for capturing the response of the net flux to such [La Nina] events.” Haverd et al. (2018, p. 3013)
When the winds are strongest during the cold cycle of ENSO deep upwelling occurs and [ocean CO2 partial pressure] values are at a maximum. *Feely et al. (1999, p. 599)*

\[
S_{OCN_t} = \frac{5.53}{(0.51)} \frac{C_t}{C_0} - 0.05 \frac{C_t}{C_0} - 0.01 S_{OI_t}
\]
\[\Delta C = \text{GROWTH IN ATM. CONCENTRATIONS} \]

\[\Delta C_t = E_t - S_{\text{LND}}_t - S_{\text{OCN}}_t \]
THE DYNAMICS OF C

\[\Delta C_t = E_t - S_{LND_t} - S_{OCN_t} \]
\[= E_t - \beta_1^* C_t - \beta_2^* C_t + \epsilon_t, \quad \epsilon_t \sim I(0) \]
\[(1 + \beta_1^* + \beta_2^*) C_t - C_{t-1} = E_t + dt + x_t + \epsilon_t \]
\[(1 - qL) C_t = qE_0 + qdt + qx_t + q\epsilon_t \]

Three insights:
\[C_t = q^t \left[C_0 - \frac{qE_0}{1 - q} + \frac{dq^2}{2(1 - q)^2} \right] + \left[\frac{qE_0}{1 - q} - \frac{dq^2}{2(1 - q)^2} \right] + \frac{dq}{1 - q} t + \sum_{j=0}^{t-1} q^{j+1} x_{t-j} + \sum_{j=0}^{t-1} q^{j+1} \epsilon_{t-j} \]
\[= o(1) + O(1) + O(t) + I(1) + I(0) = O(t) + I(1) \]

Thus,
\[\Delta C_t = I(0) \]

But,
\[(1 - qL)(1 - L) C_t = qd + qdx_t + q\Delta \epsilon_t = I(0) \]

\[\beta_t^* = \frac{\beta_t}{C_0} \approx 0.01 \]
\[x_t = \sum_{i=1}^{t} \eta_{5,i} \]
\[q := \frac{1}{1 + \beta_1^* + \beta_2^*} \approx \frac{1}{1.02} \]
THE SYSTEM MODEL

State equation Model 1

\[
S_{LN}t_{t+1}^* = \frac{\beta_1}{C_0} C_{t+1}^*
\]

\[
S_{OCN}t_{t+1}^* = \frac{\beta_2}{C_0} C_{t+1}^*
\]

\[
E_{t+1}^* = E_t^* + d + \eta_{5,t}
\]

\[
C_{t+1}^* = C_t^* + G_{ATM}t_{t+1}
\]

\[
G_{ATM}t_{t+1}^* = E_{t+1}^* - S_{LN}t_{t+1}^* - S_{OCN}t_{t+1}^*
\]

State equation Model 2

\[
S_{LN}t_{t+1}^* = \frac{\beta_1}{C_0} C_{t+1}^* + \beta_3 S{O}l_{t+1}
\]

\[
S_{OCN}t_{t+1}^* = \frac{\beta_2}{C_0} C_{t+1}^* + \beta_4 S{O}l_{t+1}
\]

\[
E_{t+1}^* = E_t^* + \beta_5 \Delta \log GDP_{t+1} + \text{dummies} + \eta_{5,t}
\]

Measurement equation

\[
C_t = C_t^* + X_{1,t}
\]

\[
S_{LN}t_{t} = S_{LN}t_{t+1}^* + X_{2,t}
\]

\[
S_{OCN}_t = S_{OCN}t_{t+1}^* + X_{3,t}
\]

\[
E_t = E_{t-1}^* + X_{4,t}
\]
RESIDUAL DIAGNOSTICS

Model 1

<table>
<thead>
<tr>
<th>Residual</th>
<th>mean</th>
<th>std dev</th>
<th>skew</th>
<th>kurt</th>
<th>LB(1)</th>
<th>JB</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.030</td>
<td>0.953</td>
<td>0.313</td>
<td>3.061</td>
<td>1.671</td>
<td>0.955</td>
<td>1.659</td>
</tr>
<tr>
<td>E</td>
<td>0.204</td>
<td>0.988</td>
<td>-1.372</td>
<td>8.084</td>
<td>0.002</td>
<td>80.66***</td>
<td>1.897</td>
</tr>
<tr>
<td>S_LND</td>
<td>-0.152</td>
<td>0.985</td>
<td>0.033</td>
<td>2.960</td>
<td>0.202</td>
<td>0.014</td>
<td>2.064</td>
</tr>
<tr>
<td>S_OCN</td>
<td>0.051</td>
<td>0.997</td>
<td>0.263</td>
<td>2.843</td>
<td>0.050</td>
<td>0.729</td>
<td>1.906</td>
</tr>
</tbody>
</table>

Model 2

<table>
<thead>
<tr>
<th>Residual</th>
<th>mean</th>
<th>std dev</th>
<th>skew</th>
<th>kurt</th>
<th>LB(1)</th>
<th>JB</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.031</td>
<td>0.879</td>
<td>-0.239</td>
<td>3.666</td>
<td>0.212</td>
<td>1.569</td>
<td>1.836</td>
</tr>
<tr>
<td>E</td>
<td>0.592</td>
<td>0.769</td>
<td>0.351</td>
<td>3.147</td>
<td>1.880</td>
<td>1.198</td>
<td>1.636</td>
</tr>
<tr>
<td>S_LND</td>
<td>-0.074</td>
<td>0.983</td>
<td>0.042</td>
<td>2.343</td>
<td>0.478</td>
<td>1.023</td>
<td>2.172</td>
</tr>
<tr>
<td>S_OCN</td>
<td>0.032</td>
<td>0.961</td>
<td>0.135</td>
<td>3.441</td>
<td>0.242</td>
<td>0.622</td>
<td>2.093</td>
</tr>
</tbody>
</table>
RESIDUAL PROCESSES

\[X_{1,t} \text{ in } C_t \]
\[X_{2,t} \text{ in } S_{LND_t} \]
\[X_{3,t} \text{ in } S_{OCN_t} \]
\[X_{4,t} \text{ in } E_t \]
PARAMETER ESTIMATES

<table>
<thead>
<tr>
<th>Model 2</th>
<th>Coefficients</th>
<th>Variances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficients</td>
<td>estimate</td>
</tr>
<tr>
<td></td>
<td>c_1 (filt.)</td>
<td>-6.77</td>
</tr>
<tr>
<td></td>
<td>c_2 (filt.)</td>
<td>-5.35</td>
</tr>
<tr>
<td></td>
<td>β_1</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td>β_2</td>
<td>5.57</td>
</tr>
<tr>
<td></td>
<td>β_3 (filt.)</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>β_4 (filt.)</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>β_5 (filt.)</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>β_6 (filt.)</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>β_7 (filt.)</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>β_8 (filt.)</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>β_9 (filt.)</td>
<td>-0.65</td>
</tr>
<tr>
<td></td>
<td>ϕ_1</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>ϕ_3</td>
<td>0.74</td>
</tr>
</tbody>
</table>
SIMULATIONS OF MODEL 1

σ_4^2 exhibits “pile-up” problem (Stock and Watson 1998)
BUDGET IMBALANCE

(A) Smoothed
\(-\Delta X_1 + X_2 + X_3\)

(B) One-year ahead predictions

(C) Components
\(-\Delta X_1, -X_2, -X_3\)
AIRBORNE FRACTION AND SINK RATE

Airborne Fraction

Sink Rate

\[AF = \frac{\Delta C}{E} \]

\[SR = \frac{S_{LND} + S_{OCN}}{C} \]
Forecasts of World GDP growth from IMF and World Bank

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMF</td>
<td>3.2%</td>
<td>-4.9%</td>
<td>5.4%</td>
</tr>
<tr>
<td>World Bank</td>
<td>2.6%</td>
<td>-5.2%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Data</td>
<td>2.4%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Forecasts of SOI from forecast model of monthly SOI data 1866-1920, with trigonometric seasonal and second-order trigonometric cycle w/ period about 4 years.
PROJECTIONS TO 2100

Scenarios:
- 1% GDP growth
- 3.4% GDP growth
- 5% GDP growth
- Piketty scenario:
 - 3.4% til 2030
 - 3% til 2050
 - 1.5% til 2100
CONCLUSIONS

• Specification of state-space model for Global Carbon Budget
• World GDP as driver in emissions
• Sinks: linear in CO2 concentrations and in SOI
• CO2 concentrations are I(1) ranging on I(2)
• Model allows for forecasting, projections, study of key variables such as airborne fraction and sink rate

Future directions
• Include ensemble members for S_LND and S_OCN
• Factor model for drift in emissions using large macroeconomic dataset
• Higher resolution on Global Carbon Cycle module (MAGICC)
• Connection to temperatures (Energy Balance Models)
• Cointegration analysis