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ABSTRACT

Climate econometrics is a new sub-discipline that has grown
rapidly over the last few years. As greenhouse gas emissions
like carbon dioxide (CO2), nitrous oxide (N2O) and methane
(CH4) are a major cause of climate change, and are gener-
ated by human activity, it is not surprising that the tool
set designed to empirically investigate economic outcomes
should be applicable to studying many empirical aspects of
climate change.

Economic and climate time series exhibit many commonali-
ties. Both data are subject to non-stationarities in the form
of evolving stochastic trends and sudden distributional shifts.
Consequently, the well-developed machinery for modeling
economic time series can be fruitfully applied to climate
data. In both disciplines, we have imperfect and incomplete
knowledge of the processes actually generating the data.
As we don’t know that data generating process (DGP), we
must search for what we hope is a close approximation to it.

Jennifer L. Castle and David F. Hendry (2020), “Climate Econometrics: An Overview”,
Foundations and Trends® in Econometrics: Vol. 10, No. 3-4, pp 145–322. DOI:
10.1561/0800000037.
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The data modeling approach adopted at Climate Economet-
rics (http://www.climateeconometrics.org/) is based on a
model selection methodology that has excellent properties
for locating an unknown DGP nested within a large set of
possible explanations, including dynamics, outliers, shifts,
and non-linearities. The software we use is a variant of ma-
chine learning which implements multi-path block searches
commencing from very general specifications to discover a
well-specified and undominated model of the processes under
analysis. To do so requires implementing indicator satura-
tion estimators designed to match the problem faced, such
as impulse indicators for outliers, step indicators for loca-
tion shifts, trend indicators for trend breaks, multiplicative
indicators for parameter changes, and indicators specifically
designed for more complex phenomena that have a com-
mon reaction ‘shape’ like the impacts of volcanic eruptions
on temperature reconstructions. We also use combinations
of these, inevitably entailing settings with more candidate
variables than observations.

Having described these econometric tools, we take a brief
excursion into climate science to provide the background
to the later applications. By noting the Earth’s available
atmosphere and water resources, we establish that humanity
really can alter the climate, and is doing so in myriad ways.
Then we relate past climate changes to the ‘great extinctions’
seen in the geological record. Following the Industrial Revo-
lution in the mid-18th century, building on earlier advances
in scientific, technological and medical knowledge, real in-
come levels per capita have risen dramatically globally, many
killer diseases have been tamed, and human longevity has ap-
proximately doubled. However, such beneficial developments
have led to a global explosion in anthropogenic emissions of
greenhouse gases. These are also subject to many relatively
sudden shifts from major wars, crises, resource discoveries,

http://www.climateeconometrics.org/
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technology and policy interventions. Consequently, stochas-
tic trends, large shifts and numerous outliers must all be
handled in practice to develop viable empirical models of cli-
mate phenomena. Additional advantages of our econometric
methods for doing so are detecting the impacts of impor-
tant policy interventions as well as improved forecasts. The
econometric approach we outline can handle all these jointly,
which is essential to accurately characterize non-stationary
observational data. Few approaches in either climate or eco-
nomic modeling consider all such effects jointly, but a failure
to do so leads to mis-specified models and hence incorrect
theory evaluation and policy analyses. We discuss the haz-
ards of modeling wide-sense non-stationary data (namely
data not just with stochastic trends but also distributional
shifts), which also serves to describe our notation.

The application of the methods is illustrated by two detailed
modeling exercises. The first investigates the causal role of
CO2 in Ice Ages, where a simultaneous-equations system is
developed to characterize land ice volume, temperature and
atmospheric CO2 levels as non-linear functions of measures
of the Earth’s orbital path round the Sun. The second turns
to analyze the United Kingdom’s highly non-stationary an-
nual CO2 emissions over the last 150 years, walking through
all the key modeling stages. As the first country into the
Industrial Revolution, the UK is one of the first countries
out, with per capita annual CO2 emissions now below 1860’s
levels when our data series begin, a reduction achieved with
little aggregate cost. However, very large decreases in all
greenhouse gas emissions are still required to meet the UK’s
2050 target set by its Climate Change Act in 2008 of an
80% reduction from 1970 levels, since reduced to a net zero
target by that date, as required globally to stabilize tem-
peratures. The rapidly decreasing costs of renewable energy
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technologies offer hope of further rapid emission reductions
in that area, illustrated by a dynamic scenario analysis.

Keywords: climate econometrics; model selection; policy interventions;
outliers; saturation estimation; Autometrics; Ice Ages; CO2 emissions.



1
Introduction

Climate econometrics is a sub-discipline that has grown rapidly over
the last few years, having held four annual international conferences (at
Aarhus, Oxford, Rome and Milan) and with a global network.1 A Spe-
cial Issue of the Journal of Econometrics (https://www.sciencedirect.
com/journal/journal-of-econometrics/vol/214/issue/1) has 14 contri-
butions across a wide range of climate issues, and a second in Econo-
metrics (https://www.mdpi.com/journal/econometrics/special_issues/
econometric_climate) is in preparation. Because greenhouse gas emis-
sions like carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4)
are the major cause of climate change, and are generated by human
activity, it is not surprising that the tool set originally designed to em-
pirically investigate economic outcomes should be applicable to studying
many empirical aspects of climate change. Most climate-change analysis
is based on physical process models embodying the many known laws
of conservation and energy balance at a global level. Such results under-
pin the various reports from the Intergovernmental Panel on Climate
Change (IPCC: https://www.ipcc.ch/). Climate theories can also be

1See https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=climateeconometrics:
its planned 5th Econometric Models of Climate Change Conference at the University
of Victoria has had to be postponed till 2021 because of the SARS-CoV-2 pandemic.
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embedded in models of the kind familiar from macroeconomics: for ex-
ample, Kaufmann et al. (2013) link physical models with statistical ones
having a stochastic trend, and Pretis (2019) establishes an equivalence
between two-component (i.e., atmosphere and oceans) energy-balance
models of the climate and a cointegrated vector autoregressive system
(CVAR). Even in such a well-understood science, knowledge is not
complete and immutable, and there are empirical aspects that need
attention. For example, CO2 and other greenhouse gas emissions depend
on changeable human behavior; volcanic eruptions vary greatly in their
climate impacts; the rate of loss of Arctic sea ice alters the Earth’s
albedo and such feedbacks affect warming.

Our approaches at Climate Econometrics (our research group, shown
capitalized to differentiate it from the general research area) are comple-
mentary to physical process models, and use a powerful set of modeling
tools developed to analyze empirical evidence on evolving processes
that are also subject to abrupt shifts, called wide-sense non-stationarity
to distinguish from the use of ‘non-stationarity’ purely for unit-root
processes that generate stochastic trends: see Castle and Hendry (2019).
A key reason is that differencing a wide-sense non-stationary time
series does not ensure stationarity as is often incorrectly assumed
in economics. Because the data are wide-sense non-stationary time
series observations, the data generating process (DGP) is inevitably
unknown and has to be discovered. The model selection methodol-
ogy described below has excellent properties for locating an unknown
DGP when it is embedded within a large set of potential explana-
tions. Thus, we advocate commencing from a general specification that
also includes variables to allow for dynamics, outliers, shifts, and non-
linearities. We use a variant of machine learning called Autometrics
that explores multi-path block searches to discover a well-specified and
undominated model of the processes under analysis (see Doornik, 2009).
Hendry and Doornik (2014) analyze the properties of Autometrics: also
see §2.3.2 The approach is available in R by Pretis et al. (2018a) at
https://cran.r-project.org/web/packages/gets/index.html, and as the

2For summaries, see http://voxeu.org/article/data-mining-more-variables-obser
vations and https://voxeu.org/article/improved-approach-empirical-modelling-0.

https://cran.r-project.org/web/packages/gets/index.html
http://voxeu.org/article/data-mining-more-variables-observations
http://voxeu.org/article/data-mining-more-variables-observations
https://voxeu.org/article/improved-approach-empirical-modelling-0
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Excel Add-in XLModeler (see https://www.xlmodeler.com/). Other
model selection algorithms include the Lasso (see Tibshirani, 1996) and
its variants.

Our methods are designed to select models even when there are more
candidate variables, N , than the number of observations, T . Autometrics
employs a variety of saturation estimators that inevitably create N > T .
Each is designed to match the problem faced, namely impulse-indicator
saturation (denoted IIS) to tackle outliers, step-indicator saturation
(SIS) for location shifts, trend-indicator saturation (TIS) for trend
breaks, multiplicative-indicator saturation (MIS) for parameter changes,
and designed-indicator saturation for modeling phenomena with a regu-
lar pattern, applied below to detecting the impacts on temperature of
volcanic eruptions (VIS). Importantly, saturation estimators can be used
in combination, and can be applied when retaining without selection a
theory-model that is the objective of a study, while selecting from other
potentially substantive variables. Saturation estimators, and indeed our
general approaches, have seen applications across a range of disciplines
including dendrochronology, volcanology, geophysics, climatology, and
health management, as well as economics, other social sciences and fore-
casting. Although theory models are much better in many of these areas
than in economics and other social sciences, modeling observational
data faces most of the same problems, which is why an econometric
toolkit can help.

Below, we explain our econometric methods and illustrate some of
their applications to climate time series. The first illustration investi-
gates past climate variability over the Ice Ages, where a simultaneous-
equations system is developed to characterize land ice volume, Antarctic
temperature and atmospheric CO2 levels as non-linear functions of mea-
sures of the Earth’s evolving orbital path round the Sun. The focus
is on system modeling and how we implement that despite N > T , as
well as the difference in how saturation estimation is applied in systems.
Few economists will ever have the opportunity to consider multi-step
forecasts over 100,000 years as we do here! The second illustration
is a detailed study of the UK’s CO2 emission over 1860–2017 that
walks through the various stages of formulation, model specification,
selection while tackling outliers and location shifts, then investigating

https://www.xlmodeler.com/


152 Introduction

cointegration, and on to model simplification for forecasting and policy
analyses. A key aim is establishing the possible impacts of past policy
interventions though we also discuss possible future developments.

As Pretis (2019) remarks

Econometric studies beyond IAMs (integrated assessment
models) are split into two strands: one side empirically
models the impact of climate on the economy, taking climate
variation as given . . . the other side models the impact of
anthropogenic (e.g., economic) activity onto the climate by
taking radiative forcing—the incoming energy from emitted
radiatively active gases such as CO2—as given . . . . This
split in the literature is a concern as each strand considers
conditional models, while feedback between the economy
and climate likely runs in both directions.

Examples of approaches conditioning on climate variables such as tem-
perature include Burke et al. (2015), Pretis et al. (2018b), Burke et al.
(2018), and Davis (2019). Hsiang (2016) reviews such approaches to
climate econometrics. Examples from many studies modeling climate
time series include Estrada et al. (2013), Kaufmann et al. (2011, 2013)
and Pretis and Hendry (2013). Pretis (2017) addresses the exogeneity
issue in more detail. Most of the research described in this monograph
concerns the second approach, although the methods are applicable
both to the first and to investigating exogeneity as shown in Section 6.
The resulting econometric tools also contrast with the methodology
predominantly used in the first approach of a quasi-experimental frame-
work using panel regressions under the assumption of strict exogeneity
of climate variables.

The structure of the monograph is as follows. First, Section 2 de-
scribes econometric methods for empirical climate modeling that can
account for wide-sense non-stationarity, namely both stochastic trends
and location shifts, with possibly large outliers, as well as dynamics and
non-linearities. Model selection is essential as the behavioral processes
determining greenhouse gas emissions are too complicated to be known
a priori. A basic question then concerns what is model selection trying
to find? This is answered in §2.1 on the roles therein of theory models
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and DGPs by trying to find the latter, or at least a good approximation
to its substantive components. §2.2 first discusses the formulation of
models for wide-sense non-stationary time series, then §2.3 describes
model selection by Autometrics and §2.4 explains its block multi-path
selection algorithm. Next, §2.5 turns to understanding why automatic
model selection can work well despite N > T . Saturation estimators
are described in §2.6, commencing with impulse-indicator saturation
(IIS) to tackle outliers. IIS is illustrated in §2.6.1, and its properties
are described in §2.6.2. Then §2.6.3 considers step-indicator saturation
(SIS), §2.6.4 the extension to super saturation estimation combining IIS
and SIS, §2.6.5 explains a variant to handle trend saturation estimation
(TIS), followed in §2.6.6 by multiplicative-indicator saturation (MIS)
which interacts SIS with regressors for detecting parameter changes.
Then §2.6.7 illustrates designed-indicator saturation by formulating in-
dicators for modeling the impacts of volcanic eruptions on temperature
reconstructions (VIS). §2.7 summarizes the various saturation estima-
tors. §2.8 considers selection, estimation and evaluation of simultaneous
equations models, addressing identification in §2.8.1. Facing forecasting
in a wide-sense non-stationary world, §2.9 discusses the consequences
of not handling location shifts and describes forecasting devices that
are more robust after shifts than ‘conventional’ forecasting models.

Section 3 considers hazards confronting empirical modeling of non-
stationary time-series data using an example where a counter-intuitive
finding is hard to resolve. The framework has a clear subject-matter
theory, so is not mere ‘data mining’, yet the empirical result flatly
contradicts the well-based theory. §3.1 considers whether assessing the
constancy and invariance of the relationship can reveal the source of the
difficulty, but does not. An encompassing evaluation of the relationship
in §3.2 fortunately does.

Section 4 provides a brief excursion into climate science, mainly
concerned with the composition of the Earth’s atmosphere and the role
of CO2 as a greenhouse gas. §4.1 considers whether humanity can alter
the planet’s atmosphere and oceans, and demonstrates we can—and
are. §4.2 discusses the consequences of changes in the composition of
the atmosphere, focusing on the impacts of climate change on ‘great
extinctions’ over geological time.
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Section 5 considers the consequences, both good and bad, of the
Industrial Revolution raising living standards beyond the wildest dreams
of those living in the 17th century, but leading to dangerous levels of
CO2 emissions from using fossil fuels.

Against that background, we consider applications of climate econo-
metrics. Section 6 illustrates the approach by modeling past climate
variability over the Ice Ages. §6.1 describes the data series over the past
800,000 years, then §6.2 models ice volume, CO2 and temperature as
jointly endogenous in a 3-variable system as a function of variations in
the Earth’s orbit, taking account of dynamics, non-linear interactions
and outliers using full information maximum likelihood. The general
model is formulated in §6.2.1, and the simultaneous system estimates
are discussed in §6.2.2. Their long-run implications are described in
§6.3 with one hundred 1000-year 1-step and dynamic forecasts in §6.3.1.
Then, §6.3.2 considers when humanity might have begun to influence
climate, and discusses the potential exogeneity of CO2 to identify its
role during Ice Ages. §6.4 looks 100,000 years into the future using the
fact that the eccentricity, obliquity and precession of Earth’s orbital
path is calculable far into the future, to explore the implications for the
planet’s temperature of atmospheric CO2 being determined by humans
at levels far above those experienced during Ice Ages. Finally, §6.5
summarizes the conclusions on Ice-Age modeling.

Section 7 models UK annual CO2 emissions over 1860–2017 to walk
through the stages of modeling empirical time series that manifest all the
problems of wide-sense non-stationarity. §7.1 provides data definitions
and sources, then §7.2 discusses the time-series data. §7.3 formulates
the econometric model, then §7.4 highlights the inadequacy of simple
model specifications. The four stages of model selection from an initial
general model are described in §7.5, then implemented in §7.6–§7.8. §7.9
conducts an encompassing test of the linear-semilog model against a
linear-linear one. §7.10 presents conditional 1-step ‘forecasts’ and multi-
step forecasts from a VAR. §7.11 addresses the policy implications of
the empirical analysis, then §7.12 considers whether the UK can reach
its 2008 Climate Change Act (CCA) CO2 emissions targets for 2050.
Finally, §7.13 estimates a ‘climate-environmental Kuznets curve’.
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Section 8 concludes and summarizes a number of other empirical
applications.

To emphasize the different and interacting forms of non-stationarity,
Figure 1.1 records time series from climate and economic data. Panel (a)
shows the varying trends in global monthly atmospheric CO2 concentra-
tions in ppm measured at Mauna Loa over 1958(1)–2019(6); Panel (b)
records the dramatically non-stationary UK per capita CO2 emissions,
with up and down trends, outliers and shifts; Panel (c) reports the log
of UK GDP, again with changing trends and large shifts; and (d) plots
the log of the UK wage share, with large shifts and outliers.

The lockdowns round the world in response to SARS-CoV-2 will
doubtless cause a sharp drop in global CO2 emissions in early 2020 need-
ing modeled. The indicator saturation estimators described in Section 2
are designed to tackle such multiple shifts of unknown magnitudes
and directions at unknown dates as countries gradually bring their
pandemics under sufficient control to ‘restart’ their economies.
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Figure 1.1: (a) Global monthly atmospheric CO2 concentrations in parts per million
(ppm) measured at Mauna Loa, 1958(1)–2019(6); (b) UK CO2 emissions in tons per
capita per annum; (c) the log of UK GDP; (d) log of the UK wage share. (b)–(d)
are all annual over 1860–2018.



2
Econometric Methods for Empirical Climate

Modeling

In this section, we describe the econometric tools that are needed
for empirical climate modeling of wide-sense non-stationary data. §2.1
commences with a discussion of the objective of the study, usually a
theory-based formulation, as against what should be the target for
modeling. Often the objective is made the target, but that needs om-
niscience: instead the target should be the process that generated the
data while retaining the object of analysis. Such an approach allows for
the possibility of finding that the target and object coincide without
imposing that they must. §2.2 describes the formulation of models
for wide-sense non-stationary time series, then §2.3 discusses model
selection by Autometrics and §2.4 explains the block multi-path se-
lection algorithm. §2.5 analyzes why automatic model selection can
work well despite N > T , building on Hendry and Doornik (2014),
before §2.6 explains saturation estimators, summarizing the different
saturation approaches in §2.7. The selection, estimation and evaluation
of simultaneous-equations models are considered in §2.8 commencing
from a dynamic system, with the issue of identification addressed in
§2.8.1. §2.9 discusses forecasting in a wide-sense non-stationary world.

156
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2.1 Theory Models and Data Generation Processes

The most basic question concerns ‘what is empirical model selection
trying to find’? Given the answer to that, then one can address how
best to find it. Many features of models of observational data cannot
be derived theoretically, particularly facing wide-sense non-stationarity.
While a theory-model provides the object of interest to a modeler, that
theory can only be the target of a study if it is complete, correct and
immutable, despite often being imposed as the target yet lacking those
characteristics. Facing non-stationary time series, ceteris paribus is
simply not applicable because what is excluded will not stay the same:
see Boumans and Morgan (2001). Viable models of non-stationarity
must include everything that matters empirically if estimated models
are to be constant.

To understand how any system actually functions, the appropriate
target for model selection must be its data generation process (DGP).
The DGP of the world is the joint density DW1

T
(w1, . . . ,wT | ψ1

T ,W0)
where W1

T is the complete set of variables over a time period 1, . . . , T ,
conditional on the past, W0. However, DW1

T
(·) and the ‘parameters’

ψ1
T ∈ Ψ of the processes may be time varying. In practice, DGPs are too

high dimensional and too non-stationary to develop complete theories
about, or to precisely model empirically, so local DGPs (denoted LDGP)
are usually the best that can be achieved. The LDGP is the DGP for
the n variables {xt} which an investigator has chosen to model, with
entailed ‘parameters’ θ1

T ∈ Θ. The theory of reduction explains how the
LDGP DX1

T
(·) is derived from DW1

T
(·), the resulting transformations of

the ‘parameters’ that implies, and what the properties of DX1
T

(·) will
be (see e.g., Hendry, 2009).

The LDGP DX1
T

(·) can always be written by sequential factorization
with a martingale difference (innovation) error, that is unpredictable
from the past of the process (see Doob, 1953):

DX1
T

(X1
T | X0, θ

1
T ) =

T∏
t=1

Dxt(xt | X1
t−1,X0, θt). (2.1)
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Thus, the joint density can be expressed as the product of the sequen-
tial individual densities even when the ‘parameters’ are not constant.
Let EXt−1 denote the expectation over the distribution DXt−1(·), and
define εt = xt − EXt−1 [xt | X1

t−1], then EXt−1 [εt | X1
t−1] = 0, so {εt} is

indeed a martingale difference error process, with EXt−1 [εt | E1
t−1] = 0

where E1
t−1 = (εt−1, . . . , ε1). This provides a viable basis for laws of

large numbers, central limit theorems and congruent models which
are models that match the evidence, so are ‘well specified’. Note that
the LDGP innovation error {εt} is designed, or created, by the reduc-
tions entailed in moving from the DGP to the LDGP, so is not an
‘autonomous’ process, but rather a reflection of our ignorance. A larger
choice of relevant variables than {xt} would make the LDGP a better
approximation to the actual DGP, which should deliver smaller innova-
tion errors, sustaining a progressive research strategy. Once whatever
set of {xt} has been chosen, one cannot do better than know its LDGP
DX1

T
(·), which encompasses all models thereof on the same data (i.e., can

explain their findings: see Bontemps and Mizon, 2008). Consequently,
the LDGP is the only appropriate target for model selection.

However, LDGPs are almost always unknown in practice, so Hendry
and Doornik (2014) emphasize the need to discover the LDGP from
the available evidence while retaining theory information. Doing so
requires nesting the LDGP in a suitably general unrestricted model
(denoted GUM), while also embedding the theory model in that GUM,
then searching for the simplest acceptable representation, stringently
evaluating that selection for congruence and encompassing. Since the
variables {xt} chosen for analysis usually depend on available subject-
matter theory, institutional knowledge, and previous evidence, most
theory-model objects can be directly related to the target LDGP by
embedding them therein.

Unfortunately, (2.1) provides cold comfort for empirical modelers:
sequential factorization only delivers an innovation error when using
the correct sequential distributions Dxt(·). To discover that LDGP
therefore requires also finding all distributional shifts, as omitting key
variables and/or shifts will adversely affect selected representations.
§2.2–§2.8 describe modeling aimed at discovering the LDGP. Then
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§2.9 considers forecasting in a non-stationary world, where surprisingly
different approaches may be useful.

2.2 Formulating Wide-Sense Non-Stationary Time Series Models

Empirical modeling of observational time series inevitably involves un-
certainty about which ‘explanatory’ variables are relevant and which
are irrelevant, their functional forms, lag lengths, unit roots and cointe-
gration, possible outliers, structural breaks and location shifts, as well
as the constancy and invariance of parameters. Moreover, it is essential
for valid inference to check the exogeneity status of contemporaneous
conditioning variables, whether the resulting residuals satisfy the error
properties assumed in deriving the distributions of parameter estimates,
so that selected models are congruent, and whether the selected model
can also encompass alternative explanations of the same dependent
variables. Thus, there is a set of tests for evaluating empirical modeling
outcomes, and consequently, satisfying these should also constrain the
selection process.

As it is rare not to have some theoretical basis to guide an empirical
analysis, algorithms should retain without selection all the variables in
a theory-model when selecting other features. Doing so enables much
tighter than conventional significance levels to be used during selec-
tion to reduce adventitious retention of irrelevant candidates without
jeopardizing the retention of any theory-relevant variables that are the
object of the analysis. Hendry and Johansen (2015) propose an approach
in which those other variables are orthogonalized with respect to the
theory variables, so the distributions of estimators of the parameters of
the object are unaffected by selection: for additional analyses and an
empirical illustration, see Hendry (2018).

To formalize our notation, denote the variables to be modeled by
yt, the theory-model contemporaneous ‘explanatory’ variables by the
n1 × 1 vector zt, and the other current-dated candidate variables by
the n2 × 1 vector vt (possibly after orthogonalization with respect to
zt). Let w′t = (z′t,v′t) which is n× 1 where n = n1 + n2 (although wt is
the same symbol as in §2.1, here it denotes a tiny subset of all possible
variables). §2.2.1 considers specifying lag length; §2.2.2 functional forms;
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§2.2.3 the formulation of the resulting general unrestricted model; and
§2.2.4 model evaluation. Saturation estimators are not discussed in
detail till §2.6.

2.2.1 Lag Length Specification

Almost all empirical econometric models of time series are dynamic
as events take time to work through economies. The Earth’s climate
also adjusts relatively slowly to changes in greenhouse gas emissions
because of the absorption and temperature interactions between the
oceans and the atmosphere, so such models have to be dynamic as
well. The first step is to create s lags, wt, . . . ,wt−s, to implement the
sequential factorization in Equation (2.1) for the GUM. This is to avoid
residuals from the general model being autocorrelated. The sequential
densities in (2.1) should include all lags of the data, but in practice,
lags are truncated at s, where a sufficient number of lags are retained
to ensure there is no loss of dynamic information, with residuals that
are white noise. Nevertheless, as noted above, distributional shifts will
also need to be modeled to achieve that, a topic left till §2.6, though
included in (2.2).

2.2.2 Functional Forms

Many economic models are non-linear in that the variables are trans-
forms of the original measurements (not simply logs) as with the
quadratic relationship between real wages and the unemployment rate
in Castle and Hendry (2014b). Because of the potential for climate
tipping points, such as when an ice-free Arctic Sea led to large-scale
methane release from the permafrost melting in the tundra causing
rapid climate warming (see Vaks et al., 2020), non-linear relationships
cannot be neglected. More positively, sensitive intervention points in the
post-carbon transition could induce leverage in policy actions inducing
non-linearities in models (see Farmer et al., 2019).

A class of functional-form transformations for non-linearity tests
(denoted Fnl below) was proposed by Castle and Hendry (2010) based on
(u2
i,t; u3

i,t; ui,te−|ui,t|) obtained from the principal components of the wt,
given by ut = Ĥ′(wt −w), where Ω̂ = T−1 ∑T

t=1(wt −w)(wt −w)′ =
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ĤΛ̂Ĥ′. When Ω̂ is non-diagonal, each ui,t is a linear combination of
many wj,t, so (e.g.,) u2

i,t involves squares and cross-products of almost
every wj,t etc. This approach can also be used to automatically generate
a set of non-linear transforms of the variables for including in the GUM.
The formulation is low dimensional compared to a general cubic, with
no collinearity between the {ui,t}, yet includes many departures from
linearity (see Castle and Hendry, 2014b, for an illustration). However,
such non-linear transforms should be restricted to I(0) variables as
Castle et al. (2020a) show that calculating principal components on
I(1) variables with stochastic trends, where some may be irrelevant, can
distort analyses of the cointegrating combinations. In §7.3.1 below, we
consider log versus linear transformations in the UK CO2 model, as
well as applying Fnl.

2.2.3 Formulation of Single-Equation General
Unrestricted Model

Since climate time series are wide-sense non-stationary, models thereof
must include features to tackle that. As well as many candidate explana-
tory variables, dynamics and non-linearities, we include T indicators for
impulses denoted 1{t} equal to zero except for unity at t, and T − 2 step
shifts S{i≤t} =

∑t
j=1 1{j} (which Ericsson, 2012, calls super-saturation:

see §2.6.1 and §2.6.3). This results in N = 4n(s + 1) + s + 2(T − 1)
candidate regressors including indicators, so N � T . Denoting by [ ]
the set of variables that will be retained without selection (which may
include lags but we avoid that notational complication), the resulting
general unrestricted model is given by:

yt =
[
n1∑
i=1

θizi,t

]
+

n2∑
i=1

φivi,t +
n∑
i=1

s∑
j=1

βi,jwi,t−j +
n∑
i=1

s∑
j=0

λi,ju
2
i,t−j

+
n∑
i=1

s∑
j=0

γi,ju
3
i,t−j +

n∑
i=1

s∑
j=0

κi,jui,t−je
−|ui,t−j | +

s∑
j=1

ρjyt−j

+
T∑
i=1

δi1{t} +
T−1∑
i=2

ηiS{i≤t} + εt. (2.2)
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It is also assumed that εt ∼ IN[0, σ2
ε ], denoting an independent,

Normal distribution with constant mean zero and constant variance σ2
ε .

Since outliers and shifts are modeled, Normality seems reasonable, and
the sequential decomposition entailed by including s ≥ 1 lags on all
variables makes ‘independence’ (in the sense of a martingale difference
sequence) a viable assumption. The three more critical assumptions
that need addressed later are (a) the constancy and (b) invariance of
the parameters, and (c) the super exogeneity of the contemporaneous
variables for the parameters in (2.2): see Engle et al. (1983). The first is
discussed below in the context of multiplicative-indicator saturation after
an initial selection; the second by testing for invariance of the parameters
of the selected model to interventions affecting the subset of the wt

retained (described in §3.1), and the third indirectly by that invariance
test when the data are wide-sense non-stationary, and by an appropriate
estimator allowing for potential endogeneity. Generalizations to systems
are discussed in §2.8.

The general concept underlying (2.2) is that of designing the model
to characterize the evidence as discussed in §2.1. This notion applies to
the saturation estimators as well, in that indicators have formulations
to detect specific departures from the rest of the model: see §2.6. Thus,
impulse indicators detect outliers not accounted for by other variables,
step indicators are designed to detect location shifts etc., and below we
consider indicators with break shapes that are explicitly designed to
detect regular shift patterns.

2.2.4 Model Evaluation

Reductions from the DGP via the LDGP to a general model have testable
implications discussed in Hendry (1995). There are seven testable null
hypotheses about the congruence of the initial feasible GUM, and also
the final model, albeit there are many alternatives to each null. First
are Normal, homoskedastic, innovation errors, {εt}. Below, these null
hypotheses are tested by χ2

nd(2) for non-Normality (see Doornik and
Hansen, 2008), FAR for residual autocorrelation (see Godfrey, 1978),
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FARCH tests for autoregressive conditional heteroskedasticity (see Engle,
1982), and FHet for residual heteroskedasticity (see White, 1980).1

Next, conditioning variables wt should be weakly exogenous for
the complete set of parameters, denoted ψ, which should be constant
and invariant. As just noted, we will test that joint hypothesis through
super exogeneity (see Engle and Hendry, 1993), partly by saturation
estimators applied to the conditioning variables (see Hendry and Santos,
2010) and partly by forecast evaluation discussed in §2.9. Also, the
conditioning relationship should be linear in the transforms used to
define the wt, tested below by the reset test FReset (see Ramsey, 1969),
and Fnl described in §2.2.2.

Given a formulation like (2.2) where N � T , how can a model
of the underlying LDGP be selected from the GUM? A powerful
machine-learning tool like automatic model selection is needed for such
high-dimensional problems that humans cannot tackle: there are many
available algorithms to do so, we use Autometrics (Doornik, 2009).

2.3 Model Selection by Autometrics

Autometrics is implemented in a likelihood framework, separating the
four key components of the selection approach: the model class; the
search algorithm; model evaluation; and the decision on when a final
selection has been found. Separating these roles allows considerable
flexibility in what models and data types can be analyzed, how they
are estimated, selected and evaluated, how theory information is incor-
porated and how the final model choice is made.

The model class includes simultaneous systems through to condi-
tional single equations, their associated data types from discrete, time
series, cross sections, panels etc., and their corresponding estimation

1Most of these tests were developed for known models fitted to stationary
data, and usually need simulation calibration outside that context. Nielsen (2006)
extends the theory for residual autocorrelation tests to non-stationary autoregressive-
distributed lag models (ADL) with polynomial trends. Caceres (2007) shows that
residual-based tests for mis-specification in models of unit-root processes have asymp-
totic sizes that remain close to the nominal significance level under the null. Berenguer-
Rico and Wilms (2020) develop analyses of heteroskedasticity testing after outlier
removal.
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criteria, from least squares, through instrumental variables to maximum
likelihood. The search algorithm is a multiple-path tree search that
‘learns’ what variables are relevant as it proceeds, with many potential
settings for the thoroughness of search, and the significance level needed
to retain variables. Next, evaluation checks are carried out at every stage
to try and ensure congruent selections, starting with mis-specification
testing of the first feasible GUM and applying the same diagnostic tests
to intermediate models. These are used in the selection process to limit
the loss of information from the attempted reduction, not to evaluate
the model. Thus, we call them mis-specification tests when they are
first applied, and diagnostic tools at later stages. As shown in Hendry
and Krolzig (2005), the distributions of the tests are not affected by
their role as diagnostic tools. Fourth, the termination decision is based
on the initial nominal significance level for false null retention set by the
user (called the gauge: see §2.5.1), and is also checked by parsimonious
encompassing of the GUM to ensure that the cumulation of model sim-
plifications did not lead to a poor model choice: see Doornik (2008). The
program records all terminal model selections that are undominated,
and if several are found, uses an information criterion like AIC (see
Akaike, 1973), BIC or SC (see Schwarz, 1978) or HQ (see Hannan and
Quinn, 1979).

2.4 Model Selection Facing Wide-Sense Non-Stationarity

Once N > T , selection is essential as the GUM cannot be estimated
as it stands. More generally, every decision about (a) how a theory
is formulated, (b) how it is implemented, (c) its evidential base, (d)
its empirical specification, and (e) its evaluation, involves selection,
although these are not usually reported as such. Consider a simple
theory model that derives the equation y = f(x). Then the formulation
concerns the choice of f(·), and any transformations (such as logs) of
the variables. How it is then implemented depends on many decisions
about the dynamics linking y and x, hence on the decision time frame of
the agents involved (e.g., daily, weekly, monthly etc.), and whether the
components of x are given or need to be instrumented. The evidential
base may be at a different data frequency and aggregation level across
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agents, space, commodities, etc., than the theory, and for a selected
time period, perhaps chosen at the maximum available, but sometimes
excluding turbulent periods like wars or crises. It will be interesting to
see how researchers handle the massive disruptions of the pandemic.
The empirical specification may lead to a GUM like (2.2), where there
are additional features not included in the theory-model, so may include
more candidate variables as ‘robustness’ checks, as well as data-based
indicators. This is often the stage to which ‘selection’ is confined in
reporting empirical results, though sometimes the reasons behind the
earlier choices are noted. Finally, there are many possible evaluation
tests, only a subset of which is often selected for reporting. When N > T

is very large, there is also a computational problem of being able to
analyze large numbers of candidate variables, an issue not addressed
here (but see e.g., Doornik and Hendry, 2015, and Castle et al., 2020a).
Castle et al. (2020b) describe the selection algorithm in detail.

In the absence of an omniscient researcher, selection is inevitable
when modeling observational data: the issue is not whether to select,
but how best to do so. Our viewpoint is that an investigator must
discover what actually matters empirically, in the context of retaining
theory insights and institutional knowledge, while encompassing pre-
vious findings and alternative explanations: see Hendry and Doornik
(2014). The software implementation of that approach is Autometrics
in Doornik and Hendry (2018), in essence a machine learning algorithm
within each study, building knowledge of the main determinants and
non-stationarities. To explain how and why model selection can be
successful, we first consider its application to linear regression equations
with orthogonal variables when T � N . Although this may not seem a
likely setting for investigating non-stationary data modeled by N > T ,
the key principles can be explained, then extended to more variables
than observations while retaining theory-models and tackling wide-sense
non-stationarity.

2.5 Understanding Why Model Selection Can Work

Consider a perfect setting: a well specified linear model with constant pa-
rameters βj , an independent Normal error {εt} that is also independent
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of the N mutually orthogonal regressors {zj,t}:

yt =
N∑
j=1

βjzj,t + εt, where εt ∼ IN[0, σ2
ε ], (2.3)

with
∑T
t=1 zi,tzj,t = 0 ∀i 6= j and

∑T
t=1 z

2
i,t > 0, estimated by least-

squares from T � N correctly measured observations. The first n
variables are relevant with βj 6= 0, whereas the last N −n are irrelevant
with βj = 0, but this is not known. Nevertheless, (2.3) nests the DGP.

Estimate (2.3), then order the N sample t2-statistics, denoted τ2
j ,

testing H0: βj = 0 (using squares to obviate the need to consider
signs), as:

τ2
(N) ≥ · · · ≥ τ

2
(m) ≥ c

2
α > τ2

(m−1) ≥ · · · ≥ τ
2
(1) (2.4)

where the cut-off τ2
(m) between retaining and excluding variables uses the

critical value c2
α for significance level α. Variables with the r = N−m+1

largest τ2
j values greater than c2

α are retained whereas the remaining
m− 1 others are eliminated. Only one decision is needed (which we call
1-cut) however large N is: there is no ‘repeated testing’, and ‘goodness
of fit’ is never explicitly considered, though will be implicitly determined
by the magnitude of c2

α and the fit of the DGP equation. Ordering all
the test statistics as in (2.4) requires considerable computational power
for large N , and ‘looks like’ repeated testing, but is not in fact necessary,
as each t2 can just be compared to c2

α given orthogonality.
The key issue is what determines how close m is to n, when some or

all of the n relevant variables are not retained without selection? There
are two main components: the probability of eliminating the N − n
irrelevant variables, and the probability of retaining the n relevant.
Setting α = 1 ensures that all relevant variables will be retained, but
so will all irrelevant; and setting α = 0, no irrelevant variables will be
retained, but no relevant either. Intermediate values of α will retain
differing combinations, so we first address the probability of eliminating
irrelevant variables when n = 0 in §2.5.1 (called the gauge), then
consider the probability of retaining relevant variables when n > 0 in
§2.5.2 (called the potency).
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2.5.1 Probability of Eliminating Irrelevant Variables

The average number of false null retentions can be kept at a maximum
of k variables on average by setting α ≤ k/N . We call α the nominal
significance level, and the resulting outcome, g, the theoretical, or
expected, gauge. In the context of a 1-off similar test under the null,
size is used to describe the null rejection frequency. However, there is
no guarantee of selection distributions being independent of nuisance
effects, and tests here are being used for selection, hence the need for a
different term like gauge to describe false null retentions: see Johansen
and Nielsen (2016) for an analysis.

When n = 0, so all N variables are irrelevant, α ≈ g as shown
in Table 2.1, which records the probabilities of all 2N null rejection
outcomes in t-testing at critical value cα in (2.3). The first column
records the events that can happen from all t-tests being insignificant
through to all being significant. The second column shows the probability
of each such event when the tests have independent t-distributions,
as would be the case for (2.3), and the third reports the number of
rejection outcomes that would result. The fourth column, denoted p0.005,
illustrates the numerical probabilities for column two when α = 0.005
(i.e., 0.5%) and N = 100 when all variables are irrelevant.

The average number of null variables retained is given by:

k =
N∑
i=0

i
N !

i!(N − i)!α
i(1− α)N−i = Nα. (2.5)

Table 2.1: Rejection probabilities under the null

Event Probability Reject p0.005

P(|ti| < cα, ∀i = 1, . . . , N) (1− α)N 0 0.61
P(|ti| ≥ cα | |tj | < cα, ∀j 6= i) Nα(1− α)N−1 1 0.30
P(|ti|, |tk| ≥ cα | |tj | < cα,

1
2N(N − 1)α2(1− α)N−2 2 0.08

∀j 6= i, k)
...

...
...

...
P(|ti| < cα | |tj | ≥ cα, ∀i 6= j) Nα(N−1)(1− α) N − 1 0
P(|ti| ≥ cα, ∀i = 1, . . . N) αN N 0
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When N = 100, there are more than 1030 events (given 2100 possible
test outcomes for the events in column 1), nevertheless k = 0.5 at
α = 0.005 so with g = k/N , then g = α and one irrelevant variable will
be significant by chance every second time such a decision rule is used.
In practice, empirical values of g have a sampling distribution with a
variance that depends on α, so is small when α is (see e.g., Johansen
and Nielsen, 2009, 2016).

Formally the empirical gauge is the null retention frequency of selec-
tion statistics across M replications of a given DGP. Correspondingly,
we define the empirical potency as the average non-null retention fre-
quency, and will consider that shortly. For each variable, zj , denote the
retention rate by r̃j , then when 1(|tβj,i |≥cα) denotes an indicator equal
to unity (zero) when its argument is true (false), then for (2.3):

retention rate: r̃j = 1
M

M∑
i=1

1(|tβj,i |≥cα), j = 1, . . . , N,

gauge: g = 1
N − n

N∑
j=n+1

r̃j , (2.6)

potency: p = 1
n

n∑
j=1

r̃j .

Although there will be considerable apparent ‘model uncertainty’ in
(say) a Monte Carlo experiment with N = 100, n = 0 and α = 0.005,
because with a large number of replications, many hundreds of different
models will be selected, such variation is essentially inconsequential
since most will have just one or two irrelevant variables, and it does not
matter which particular irrelevant variable(s) are adventitiously retained.
Moreover, while it is not reflected in Table 2.1, as their null distributions
will be Normal around zero, most chance significant selections will have
|t|-values close to cα.

It may be thought that small values of α (so large values of cα) will
seriously reduce the chances of retaining relevant variables. Table 2.2
addresses this issue for a Normal distribution when N = 500, under
the null that no variables matter for t-testing, using the Normal as the
relevant baseline after taking account of outliers.
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Table 2.2: Significance levels, retained variables, and critical values under the null
for N = 500

α 0.05 0.01 0.005 0.0025 0.001 0.0001

k = Nα 25 5 2.5 1.25 0.50 0.05
cα 1.98 2.61 2.85 3.08 3.35 4.00
c2
α 3.92 6.81 8.12 9.56 11.2 16.00

As can be seen, critical values increase slowly as α decreases and
are just 2.85 at α = 0.005. Using a ‘conventional’ 5% would lead to 25
null variables being retained on average. However, doing so at such a
loose significance level in any sample will lead to an underestimate of
σ2
ε in (2.3), which can lead to more irrelevant variables being retained

and hence serious overfitting. Consequently, we recommend setting
α ≤ min[0.01, 1/N ], which will increase cα to at least 2.61, and here for
N = 500 to α = 0.002 so cα to just over 3.

The main application of very tight α is when selecting with indica-
tor saturation, in which case we set α ≤ min[0.01, 1/(N + qT )] for q
indicator sets. For example, with super-saturation, q = 2, so qT = 200
at T = 100 (see e.g., Kurle, 2019, and §2.6.4) and if N = 500 then α
could be rounded to 0.001. This formula for setting α also entails that
it declines towards zero as T →∞ to ensure a consistent selection pro-
cedure for a GUM which nests a DGP that remains finite with constant
parameters. In practice, with saturation estimation when N � T , we
suggest retaining all N variables without selection when selecting indi-
cators at a very tight α, and once the indicators are found, select over
the (N −n1) variables plus those indicators at α = 1/(N −n1) when n1
theory variables are retained without selection. Section 6 illustrates this
procedure. However, when selecting a forecasting device as discussed in
§2.9, a much looser target α can be appropriate.

2.5.2 Probability of Retaining Relevant Variables

The trade-off of using a very tight α like 0.005 (tight relative to 0.05) is
not retaining relevant variables with estimated t-values between 1.98
to 3, so we now turn to the second key component, the potency, which
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is the probability of retaining the n relevant variables. Above we noted
how to mitigate some of the costs of tight αs by retaining theory-entailed
variables without selection. As gauge is not test size, potency is not test
power given the selection context but can be evaluated against power
to measure any costs from not knowing the DGP. The potency in (2.3)
depends on the non-centralities, denoted ψ, of their t-tests relative to
cα. When ψi = cα for a Normal distribution, there is a 50% chance that
ti ≥ cα in which case the ith variable will be retained. For example,
when cα ≈ 2 there is just a 50–50 chance that a variable with ψ = 2 will
be retained, as its t-test will be approximately Normally distributed
around a mean of 2. Similarly at cα ≈ 2.6, a value of ψ = 2.6 will lead
to retention half the time. It must be stressed that this example is not a
problem of selection potency, but of test power, albeit such a conflation
is often forgotten. If a variable would not be significant at the chosen
cα on a single t-test when the DGP is known, it cannot be expected
to be selected at that critical value when the DGP is unknown. The
approximate t-test powers when a false null hypothesis is tested once
at different non-centralities are shown in Table 2.3, as well the potency
when five such tests are conducted at the same non-centrality (based
on a standard Normal distribution).

There is a 50–50 chance of retaining one variable with ψ = 2 for
cα = 2, but only a 3% chance of finding five such variables significant in
any trial. This is a probability statement, not a problem due to ‘repeated

Table 2.3: Approximate t-test powers at different non-centralities and critical values

ψ α Pr(|t| ≥ cα) (Pr(|t| ≥ cα))5

2 0.05 0.50 0.031
2 0.01 0.27 0.001
3 0.01 0.65 0.116
4 0.01 0.92 0.651
4 0.005 0.87 0.513
5 0.01 0.992 0.959
6 0.001 0.996 0.980
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testing’ or selection. As Table 2.3 shows, the power rises non-linearly
with ψ, and importantly, when it is very high, as in the bottom two
rows, it remains high even for five variables.

The potency p is then the average rejection frequency of a false
null hypothesis when selecting at a given significance level. As shown
in a number of simulation studies, the potency is close to the average
power for models like (2.3): see e.g., Castle et al. (2011) and Hendry
and Doornik (2014). Since problems confronting selection potency, such
as non-orthogonality, also confront power, potency remains close to
average power more generally.

Combining these two key components, with g ≈ α and potency close
to power, we can see that commencing selection at the same significance
level from the DGP (i.e., with no irrelevant variables) or from a GUM
that nests that DGP, a similar model will be selected, with on average
g(N−n) additional irrelevant variables in the latter. Of course this is no
guarantee that k will equal n, as non-centralities of ‘relevant variables’,
defined by having βi 6= 0, may be too small to lead to ‘significant’
outcomes even if the DGP is estimated.

The principles behind the approach just described apply to non-
orthogonal models, although 1-cut is not a sensible strategy in such
a setting. Instead, the software Autometrics uses multi-path block
searches to order the underlying values of τ2

j taking account of their
intercorrelations (see Doornik, 2009). Autometrics has two additional
features to maintain its effectiveness as noted earlier. First, given that
the feasible estimated GUM is congruent on the desired mis-specification
tests, the same tests are applied during path searches as diagnostic checks
so that paths are not followed if deleting variables makes any of those
tests significant. This is a logical requirement since the LDGP must be
a congruent representation of itself, and consequently a non-congruent
model cannot be the LDGP. Similarly, when N � T , Autometrics
checks that the current selection encompasses the GUM so no salient
information is lost (see Bontemps and Mizon, 2008, and Doornik, 2008).
These two checks on potential information losses play an important role
in helping Autometrics select appropriate models.

However, while all retained variables must be significant by de-
sign at cα in 1-cut, that will not necessarily occur with Autometrics.
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In Autometrics, variables may also be retained because of the roles
played by:

(a) diagnostic checks–when a variable is insignificant, but its deletion
makes a diagnostic test significant;

(b) encompassing tests–a variable can be individually insignificant,
but not jointly with all variables deleted so far.

Thus, the gauge may be larger than α if retained variables are irrelevant,
but equally the potency can also exceed average power. When N > T ,
both expanding and contracting block searches are needed, and as this
inevitably arises for indicator saturation estimators, we now consider
that setting.

2.6 Selecting Models with Saturation Estimation

The approach to tackling outliers that we use, called impulse-indicator
saturation (denoted IIS), was accidentally discovered by Hendry (1999),
then developed by Hendry et al. (2008) for a special case, and analyzed
more generally by Johansen and Nielsen (2009, 2016). IIS is an integral
part of the general model selection algorithm that not only selects over
the relevance of explanatory variables, lag lengths and non-linearities,
but also over observations during selection, all jointly—even though
that creates more candidate variables in total (here denoted N) than
observations T , so N > T . By selecting over observations, IIS is a
robust-statistical device, as shown by Johansen and Nielsen (2016). One
aspect of commencing from (2.2) is to achieve robustness against a
range of potential mis-specifications, an issue discussed in Castle et al.
(2020b), since the costs of selection are small compared to those of
mis-specification. Variables deemed relevant from prior reasoning can
be retained without selection while selecting over other aspects at a
tight significance level as in Hendry and Johansen (2015).

The simplest explanation of how model selection works for IIS (and
hence in general when N > T ), is to consider an independent, identically-
distributed Normal random variable with constant mean µ and variance
σ2 denoted yt ∼ IN[µ, σ2] for t = 1, . . . , T . There are no genuine outliers,
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but random samples will still on average deliver observations that lie
outside ±2σ with the appropriate probabilities (e.g., 5% for that range,
and 1% for ±2.6σ). Consider an investigator who seeks to check for
potential outliers in the data process, as in Hendry et al. (2008). Create
a complete set of impulse indicators {1{t}}, t = 1, . . . , T , so there is one
for every observation, which is why the approach is called saturation.
Set a nominal significance level α, such that αT ≤ 1, and its associated
critical value cα. Then, under the null hypothesis of no outliers, αT ≤ 1
impulse indicators should be significant on average by chance, entailing
that number of observations will be removed adventitiously.

Of course, the complete set of impulse indicators cannot sensibly be
included because a perfect fit would always result, so nothing would be
learned. Although Autometrics considers many splits and does multiple
searches across different splits, consider implementing a simple ‘split-
half’ version of the IIS procedure, namely add half the indicators, select
then repeat for the other half of the data, which is what inadvertently
occurred in Hendry (1999). Taking T as even for convenience, regress yt
on a constant and the first half of the indicators, {1{t}}, t = 1, . . . , T/2.
Doing so ‘dummies out’ the first half of the data set, so is in fact just
a standard regression on an intercept using only the second half of
the sample, which delivers unbiased estimates of µ and σ2. However, it
also provides estimates of the impulse indicators in the first half, and
any with significant t-statistics are recorded. Each individual t-test is
a standard statistical test under the null hypothesis, with Pr(|t1{t} | ≥
cα) = α. Impulse indicators are mutually orthogonal, so their estimated
coefficients are unaffected by eliminating insignificant indicators.

Drop all the first half indicators, and now regress yt on the intercept
and the second half of the indicators. Again, this delivers unbiased esti-
mates of µ and σ2, now from the first half, and reveals any significant
indicators in the second half. Finally, regress yt on the intercept and
all the sub-block significant indicators using the full sample, and select
only those indicators that remain significant at cα. Overall the algo-
rithm solves a variant of a multiple testing problem for more candidate
regressors than observations, where we control the average number of
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‘false outlier’ discoveries, or gauge as defined above and analyzed by
Johansen and Nielsen (2016).

This split-half algorithm is merely an expository device,
and as shown under the null by Hendry et al. (2008) the same outcome
will be found using more blocks which can be of different sizes. The main
reason for considering split-half analyses is that they can be undertaken
analytically to establish the feasibility of saturation estimation, and
as shown in Castle et al. (2019a), reveal the structure of different
specifications of indicators. No ‘repeated testing’ is involved by exploring
many choices of blocks, as an impulse indicator will only be significant
at the preset α if there is a large residual at that observation, with
the caveat we noted above that α ≤ 1/T . Loose significance levels can
lead to overfitting as selecting more irrelevant indicators than one or
two will result in underestimating σ2, leading to more indicators being
adventitiously selected, unless σ̂2 is bias corrected as in Johansen and
Nielsen (2009).

As described in Doornik (2009), the operational approach in Auto-
metrics uses a multi-path block search. The whole sample is divided
into blocks usually smaller than about T/4, selection at α is applied
within blocks, and any significant indicators found in each block are
added to the current selection until: (i) the resulting estimated equation
does not fail any of the diagnostic tests; and (ii) none of the as-yet-
unselected indicators are significant if added, which thereby creates
a terminal model. Then different block mixes are created and a new
multi-path block search is commenced from these different partitions
until there are no new directions to explore. In the more general case of
regressors, the same algorithm applies, and if several terminal models
are found, their variables are combined, and selection recommenced till
an undominated model is chosen. If several terminal models remain,
an information criterion can choose between terminal models that are
mutually undominated (i.e., mutually encompassing as in Bontemps
and Mizon, 2008).

Although creating a set of candidate variables that exceeds the
number of available observations with impulse indicators for every
observation may seem unlikely to be a successful approach to model
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selection, we must stress that many well-known and widely-used sta-
tistical procedures are in fact variants of IIS: rather like we all speak
prose even if we don’t know it. Examples are:

(a) recursive estimation, which is equivalent to including impulse
indicators for the ‘future’ observations, then sequentially dropping
those indicators as the algorithm moves through the sample;

(b) also, moving windows essentially uses IIS on ‘pre’ and ‘post’ data;

(c) and ‘holding back data’ (e.g., to control size) is equivalent to IIS
applied to the excluded data points;

(d) as is the less acceptable process of prior sample selection by
excluding data like war years, or ending a sample early to avoid
including shifts, etc., which also implicitly uses IIS on the omitted
observations.

(a) and (b) can detect outliers or shifts when the model is otherwise
known, but even so, ignore the information on the unused data. Im-
portantly, IIS can be included as part of the general selection process
when the model specification has to be discovered from the evidence.
Moreover, as shown by Salkever (1976), the Chow (1960) test can be
implemented by including an appropriate set of impulse indicators, so is
essentially IIS restricted to a specific subset of data for a given model.

2.6.1 Illustrating Impulse-Indicator Saturation

We now illustrate the application of split-half selection to impulse-
indicator saturation when there are no outliers, then when there is one,
using 12 observations on the simple time series:

yt = 5 + εt, εt ∼ IN[0, σ2
ε ], (2.7)

where σ2
ε = 1, with an outlier of magnitude δ = −2 at t = 8 in the

second setting. To implement split-half selection, we create all 12 impulse
indicators, then add the first six to a regression of yt on a constant to
see if any have |t|-statistics exceeding the critical value cα. If so, these
are recorded and the first six are replaced by the second six, and the
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process repeated. Finally, all selected indicators are included and their
|t|-values checked, and only those still greater than cα are retained.

Figure 2.1 records the split-half sequence. We chose α = 0.05 as
the theoretical gauge so αT = 0.6, suggesting less than one impulse
will be retained on average by chance. However, the empirical gauge
has an approximate standard deviation of 0.063 at T = 12, as shown
in Johansen and Nielsen (2016), so could be a bit larger or somewhat
smaller. With T = 12, no null indicators are likely to be selected at
α = 0.01, so although that would still be a feasible choice, we felt it
might be thought to bias the procedure in favor of finding no irrelevant
indicators.

We actually compared four closely related approaches, namely the
split half, checking which indicators are significant; Autometrics applied
to each half with their indicators included; commencing with all 12
indicators in the candidate information set and selecting by Autometrics
general algorithm; and Autometrics pre-programmed IIS algorithm.
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Figure 2.1: (a) Time series. (b) First six of the impulse indicators. None significant
at α = 0.05. (c) Second six indicators: Again none significant. (d) Final outcome,
retaining just the intercept.
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Panel (a) shows the original (uncontaminated) data; (b) the first six
impulse indicators, none of which is significant at α = 0.05 when added,
and none is retained when applying Autometrics to that specification,
where the constant is not selected over; (c) the second six, where again
none is significant—and none retained by Autometrics; and (d) the
model fit, which is just the mean of y.

The third approach is to add all 12 indicators to make an (infeasible)
GUM and apply Autometrics to that set of candidate variables, which
here also delivers the null model, as does the fourth, using the pre-
programmed IIS algorithm in Autometrics, which commences from a
model like (2.7) and automatically creates the impulse indicators if IIS
is chosen as the estimator. All four ways are applied below to other
saturation estimators, with the health warning that the first two are just
a convenient form for analysis and need not work for more complicated
DGPs: the third and fourth deliver the same outcomes at the same α,
but with the benefit that the pre-programmed IIS saves creating the
indicators.

Figure 2.2(a) illustrates a DGP when there is an outlier denoted
δ = −2 at t = 8. Figure 2.2(b) shows the first six indicators, and as before
none is significant and none retained by Autometrics applied to that
specification. But when the second six are added as regressors, 1{8} is
significant, corresponding to the smallest observed data value, and is also
retained by Autometrics for that specification with t = −2.87, p = 0.016.
The intercept is then estimated as 5.13(SE = 0.30) as opposed to
4.89(SE = 0.37) if the outlier is ignored. When the IIS option in
Autometrics is used for a model of yt on a constant, the same indicator,
1{8}, is selected. As α = 0.05, the potency given by Pr(|tδ| ≥ cα) is
approximately 0.5, so 1{8} will be significant about half the time, even
if the correct indicator was added at that observation. At α = 0.01, an
outlier of δ = 2 would be found on average about a 1/4 of the time even
if its precise location was known.

So far there is just one outlier and it is relatively small. Having
two outliers in a sample of T = 12 would be fairly bad contamination
(>15%), and their detectability depends on their magnitudes, signs
and the particular values of the observations at which they happen.
Setting δ = 2 at t = 1, so the first observation is incorrectly recorded,
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Figure 2.2: (a) Time series with an outlier of δ = −2 at t = 8. (b) First six of the
impulse indicators: None significant at α = 0.05. (c) Second six indicators: Now one
is retained, shown as wide. (d) Outcome with and without that indicator.

creates a doubly contaminated data set. Although it is not obvious
that there are two outliers from the data plot or the scaled residuals in
Figure 2.3(b), with one affecting the first observation (which would be
excluded by some approaches), IIS selects both 1{1} and 1{8}. However,
the split-half approach selects neither. This occurs because one of the
outliers lies in each half, so contaminates each baseline half in turn.
Such a problem applies even more forcibly to 1-step single path searches,
and emphasizes the benefits of multi-path block searches: see e.g., the
discussion between Gamber and Liebner (2017) and Ericsson (2017b).

IIS can also be beneficial when the underlying error distribution is
fat-tailed, as shown in Castle et al. (2012) where the errors have a t3
distribution. IIS ‘removes’ many of what would be classified as outliers
relative to a Normal and so can reduce the mean square error (MSE) of
the resulting model parameter estimates around their population values.
Also Hendry and Santos (2010) apply IIS to testing for parameter
invariance under changes in the distributions of the unmodeled (weakly
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Figure 2.3: (a) Time series with two outliers at t = 1 and t = 8 and the model fit
without IIS. (b) Residuals scaled by σ̂ε. (c) Time series and the model fit with IIS.
(d) Residuals scaled by σ̃ε (after IIS).

exogenous) variables, and show that impulse indicators may also detect
heteroskedasticity. Finally, IIS can be useful for detecting forecast biases
as in Ericsson (2017a).

2.6.2 Properties of Impulse-Indicator Saturation

When any additional regressor variables are included in the model
of yt, and are retained without selection, Johansen and Nielsen (2009)
show that the usual rates of estimator convergence to their asymptotic
distribution (namely

√
T under stationarity) are unaffected by IIS

(despite selecting from more candidate variables than observations) with
a loss of estimation efficiency dependent on the error distribution and
the choice of α. When the error {εt} is distributed symmetrically with
no outliers, as with a Normal distribution, applying IIS to a regression
with n variables xt (retained without selection), constant parameter
vector β and data second moment matrix Σ, with E[x′tεt] = 0 and
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t = 1, . . . , T for the model:

yt = β′xt + εt, where εt ∼ IN[0, σ2
ε ], (2.8)

the limiting distribution of the IIS estimator β̃ converges to β at the
usual rate of

√
T , where orthogonality is not required. That limiting

distribution is Normal, with a variance that is somewhat larger than
σ2
εΣ−1 so: √

T (β̃ − β) D→ Nn[0, σ2
εΣ−1Ωα]. (2.9)

The efficiency of β̃ with respect to the usual (and here valid) ordinary
least-squares (OLS) estimator β̂, as measured by Ωα, depends on cα
and the error distribution, but is close to (1− α)−1In for small α: see
Johansen and Nielsen (2009). Consequently, despite adding T irrelevant
impulse indicators to the candidates for selection, there is a very small
cost: for α = 1/T , on average from (2.5) just one observation will be
‘lost’ by being dummied out.

Conversely, there is the potential for major gains under the alter-
natives of data contamination and/or breaks, and as noted IIS can
be done jointly with all other selections. Under the alternative that
there are one or more outliers, IIS locates the ones with t-statistics
exceeding cα in absolute value. Estimates of impulse indicators cannot
be consistent for outliers as there is only ever a single observation from
which to estimate them, but if embedded in a process where the error
variance tended to zero (small sigma asymptotics), would be selected
with probability approaching unity. In practice, what matters is ensuring
that the estimates of the parameters of interest in the modeling exercise
are robust to the presence of a moderate number of relatively large
outliers, and simulations suggest this occurs except where the outliers
are ‘evenly’ spread through the data so most sub-samples ‘look alike’.

The simplest setting of an impulse indicator model can be useful
when teaching test power, relating back to §2.5.2. Let:

yt = δ1{τ} + εt where εt ∼ IN[0, σ2
ε ] (2.10)

where 1 ≤ τ ≤ T is known, and δ = 2σε. Then δ̂ = δ + ετ < 2σε
whenever ετ < 0 which has a probability of 1

2 , so will not be significant
at cα = 2. Moreover, even for δ = 3σε, then δ̂ will not be significant
when ετ < −σε which has a probability of about 16%; and so on.
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In the context of testing for parameter invariance, Hendry and
Santos (2010) derive the powers of individual impulse-indicator tests,
which depend on the magnitude of the outlier they detect relative to σε.
Hendry and Mizon (2011) demonstrate the dangers of not tackling
outliers in empirical models, as a failure to handle large outliers can
lead to the rejection of even a sound theory—in that instance because a
positive price elasticity for the demand for food results when estimating
without IIS. Castle et al. (2020b) show that IIS can shed insight into the
long-standing problem noted by Hettmansperger and Sheather (1992)
when using ‘conventional’ robust-statistical estimators like least median
squares (LMS: see Rousseeuw, 1984), and least trimmed squares (LTS:
see Rousseeuw, 1984, and Víšek, 1999), which transpire not to be robust
to a small accidental measurement error created when inputting the
data. In the general context of selecting variables, lags and non-linear
functions along with IIS, Hendry and Doornik (2014) show in simulations
that Autometrics has an empirical gauge close to α for small α under
the null hypothesis of no additional relevant variables, and also describe
its ability to select relevant variables under the alternative.

2.6.3 Step-Indicator Saturation

Step-indicator saturation (SIS) uses steps rather than impulses to cap-
ture permanent shifts in the location of a relationship: see Castle et al.
(2015b). Step indicators are cumulations of impulse indicators up to
the given date, so terminate with the last observation for the date
shown: e.g., S{1960} is unity till 1960 then zero thereafter. Consequently,
changes in steps, such as ∆S{1960} = S{1960} − S{1961}, correspond to
−1{1961}. Castle et al. (2017) apply SIS to invariance testing, discussed
below.

Much of the analysis of SIS is similar to that for IIS above, even
though the steps are not orthogonal. Nielsen and Qian (2018) provide
an analysis of the asymptotic properties of the empirical gauge of SIS.
While showing that its distribution is more complicated than that of
IIS in Johansen and Nielsen (2016) described above, it converges to the
nominal significance level in a range of models with stationary, random
walk and deterministically trending regressors. They conclude the gauge
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of SIS can be reliably used at a tight significance level in applications.
While there is no formal analysis as yet, a result similar to that in
Johansen and Nielsen (2009) seems likely to hold for the distribution
of estimated retained regression parameters when SIS is applied at a
suitably stringent level under the null of no step shifts. Under the null,
SIS has a somewhat larger empirical gauge than IIS as it retains two
successive roughly equal magnitude, opposite-signed step indicators to
capture an outlier, although that could be adjusted manually. Like IIS,
coefficients of step indicators will not be consistently estimated when
new steps keep occurring, but would be in a scenario of a fixed number
of steps that are all proportional to T →∞.

We now illustrate SIS for handling shifts of distributions when there
is a location shift in (2.7) of δ = −2 starting at t = 8. Only T − 1 step
indicators are needed as the T th step coincides with the constant term.
Figure 2.4(a) shows the resulting data, together with the fit that would
be obtained if SIS was not used; (b) the first six step indicators, none
of which is retained; (c) the remaining five, where S{7} is significant on
the split half, and also retained by Autometrics at α = 0.05 applied
to that specification (as well as by SIS at α = 0.05); and the model’s
fitted values. The equation standard error σ̂ε is 1.28 without SIS and
1.02 with. Figure 2.5 shows the resulting 1-step ahead forecasts with
and without SIS: the former is both more accurate and more precise.
Although this outcome certainly favors SIS as expected because the
DGP does have a location shift, the illustration did not use knowledge
of that, nor of the timing, sign and magnitude of the shift.

2.6.4 Super Saturation Estimation

Combining IIS and SIS leads to super saturation, named by Ericsson
(2012), which can be helpful when there is a mix of outliers and location
shifts. Kurle (2019) undertook a detailed simulation study of super
saturation and found that the gauge was proportional to the total
number of indicators (roughly 2(T − 1)) so the target α needed to be
tight and about half that for either alone to achieve an appropriate
gauge and avoid ‘overfitting’ by selecting at too loose a significance
level. For example, at α = 0.005 for T = 100, the gauge was around
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Figure 2.4: (a) Time series with a location shift. (b) Add the first six of the step
indicators: None significant, nor selected by Autometrics at α = 0.05. (c) Add the
other five steps: S{7} (thick solid line) significant and also retained by Autometrics.
(d) Outcome with SIS.

1-step ahead  forecast with SIS ±2
Data
Fit with SIS 
1-step forecast, no SIS ±2

~σf

Fit without SIS 
0 5 10 15

2

3

4

5

6

7

1-step ahead  forecast with SIS ±2σfData
Fit with SIS 
1-step forecast, no SIS ±2~σfFit without SIS 

^

Figure 2.5: 1-step ahead forecast ±2σ̂f with SIS (solid error bar) and without
±2σ̃f (dotted).
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0.01, both under the null of an IID process, and for retaining irrelevant
indicators when relevant ones were found. We use super saturation
when modeling the UK’s CO2 emissions since 1860 as both outliers
(e.g., from the General Strike of 1926) and location shifts (e.g., from the
introduction of natural gas in place of coal gas starting in 1969) occur.

2.6.5 Trend Saturation Estimation

Deterministic linear trends are found in a number of empirical settings,
but are unlikely to maintain the same growth rate over long periods.
For example, annual UK productivity since 1860 (defined as output per
worker per year at constant prices), shown in Figure 2.6(a) on a log
scale, exemplifies such trend shifts. An overall trend line completely
fails to characterize the evidence: early periods of below average growth
are above the line; the boom during World War I (WWI) is below and
the dramatic increase in the growth rate after World War II (WWII) is
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Figure 2.6: (a) UK productivity since 1860 with overall and six trend lines at
roughly 25-year subperiods; (b) UK productivity since 1860 with TIS selected trend
lines at α = 0.0001.
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far below. The figure also shows the fit of six separate trends to roughly
25-year subperiods: these obviously provide a far better description,
but are both arbitrary and occasionally do not match changes in trend
growth. This is most obvious at the end of the period, shown by the
ellipse, where measured productivity has flat-lined since the 2008 ‘Great
Recession’.

Trend indicator saturation (TIS: see Castle et al., 2019b, for an
analysis), was applied at α = 0.0001 to compensate for larger critical
values in non-stationary processes and for non-IID errors. Figure 2.6(b)
shows the outcome after manual deletion of trend indicators that were
selected to avoid failures of congruence: because Autometrics imple-
ments a range of mis-specification tests, when a model is under-specified,
as here, indicators can be retained that do not satisfy the target sig-
nificance level. These were deleted by the authors given the aim of the
present illustration. Even so, 12 trend indicators remained (although
an overall trend was not retained). As with super-saturation, TIS could
be combined with IIS or SIS, appropriately adjusting α.

We noted above that two successive step indicators can capture an
outlier, and as can be seen in Figure 2.6(b), several trend indicators
combined can act to correct outliers and location shifts rather than
trend breaks as such. It is well-known that second differencing removes
linear trends, changes breaks in trends to impulses and converts location
shifts to ‘blips’. Combining the near equal magnitude, opposite-sign
trend indicators found for 1917–1919, 1929–1930 and 1938–1940, left
nine trend breaks, namely at the earlier of each of those three dates
and at 1873, 1890, 1946, 1957, 1972, and 2006, noting that these times
are when the trend indicators end. Many of these are salient dates:
in historical order, 1873 was the start of the UK’s ‘Great Depression’
which ended gradually by 1896; 1919 was just after the end of WWI
(where 1917 had been the peak output year), and also the start of the
worldwide flu’ pandemic; 1930 followed the US stock market crash of
1929, and the onset of the Great Depression; 1940 was the start of
mass production for WWII and 1946 the end of war production; 1972
saw the end of the ‘post-war recovery’ growth in productivity, as 1973
was hit by the first Oil Crisis leading to the UK’s high inflation and
industrial troubles; and 2006 was the end of a long period of growth,



186 Econometric Methods for Empirical Climate Modeling

when the flat-lining of productivity starts with the Great Recession of
2008. However, we are not aware of conspicuous events in 1890 or 1957,
although these had the least significant estimated coefficients.

To interpret what TIS finds, imagine you are in 1874 with data on
productivity over 1860–1873 and fit a linear trend. Then that will be
the same as the one selected by TIS from the whole sample if the trend
rate of growth then changed in 1874. Now move forward to 1891 with
data from 1860–1890 and fit that first trend line jointly with one over
1860–1890: the first is replicated as the sum of the trend coefficients
and the second reveals a shift. Thus, TIS replicates what the historical
record would have shown at the time on the available subsamples of
data. That contrasts with fitting an overall trend to the full sample,
which is not what would have been found at the time, and hence distorts
the historical record—as we have just discussed.

A perhaps surprising application of TIS is to health care, studying
the rates of adoption of Desogesterol to replace Cerazette (a synthetic
progestogen) at all 213 UK National Health Service (NHS) Clinical
Commissioning Groups (CCGs). Walker et al. (2019) applied TIS to
analyze the heterogeneity in the extent, time, and speed of diffusion of
innovations as measured by the prescribing behavior of the CCGs, and
the resulting additional costs to the healthcare system of slow adoption
of the replacement pharmaceutical (note the favorable editorial).

2.6.6 Multiplicative-Indicator Saturation for Parameter Changes

Multiplicative-indicator saturation (MIS) focuses on changes in the
parameters of variables in models. In MIS, every variable is multiplied
by a complete set of step indicators: see e.g., Kitov and Tabor (2015) and
Castle et al. (2017) for simulations and applications, and Castle et al.
(2019a) for an analysis of its properties. Thus, SIS can be interpreted
as MIS for the constant term, but would have little potency facing
changes in β when that was the coefficient of (say) (xt − x) where x
denotes the mean of x. Indeed, Clements and Hendry (1998) show that
zero-mean changes have little impact on forecasts, and that forecast
failure is primarily caused by direct or induced shifts in the long-run
mean (an issue discussed further in §2.9). Nevertheless, MIS could detect
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such parameter changes. To see why, consider knowing that T1 was
the shift date: fitting separate models up to and after T1 will naturally
deliver estimates of the different subsample parameters. Using MIS to
select that split should find the correct indicator, or one close to it,
despite the large number of interactive indicators, albeit with added
variability. Searching through many initial candidate variables efficiently
is essential here as the number of regressors increases rapidly if testing
for non-constancy in the parameters of many variables as each variable
is multiplied by T − 1 step indicators.

To illustrate MIS, we consider a generalization of (2.7) adding a
regressor {xt} with a mean of zero, first when its coefficient is constant
with β1 = 10, and then when β1 shifts to five at observation t, which
date is revealed below, with β0 = 5 throughout, so under the null:

yt = β0 + β1xt + εt, εt ∼ IN[0, σ2
ε ]. (2.11)

To create the GUM to implement MIS, we add to 1 and xt the candidate
set of 11 variables S{j≤t}×xt = d{j}, j = 1, . . . , T−1 noting that ST = 1:

yt = β0 + β1,0xt +
T−1∑
j=1

β1,jd{j} + et, et ∼ IN[0, σ2
e ], (2.12)

and apply the usual split-half approach, where no d{j} are significant
in either half, nor are any when applying the general search procedure
in Autometrics to (2.12) at α = 0.01, in both cases retaining 1 and xt
without selection.

Next, Figure 2.7 records the situation when β1 shifts to (β1 − 5)
using the ‘split-half’ approach. Panel (a) shows yt and xt where the plot
scales the data such that both yt and xt have the same mean and range,
which here is equivalent to their regression. Panel (b) reports the first
six multiplicative indicators d{1}, . . . , d{6} of which d{5} is significant.
An indicator close to the shift is the most likely to be retained when the
shift lies in the other half. Panel (c) records the next five multiplicative
indicators d{7}, . . . , d{11} where d{7} is significant. Including the two
significant indicators, only d{7}, is selected leading to the improved
outcome in Panel (d), which is precisely what Autometrics finds.

Figure 2.8(a) shows the data with the model’s fitted values for
constant parameters in (2.11) and Panel (b) records the residuals, which
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Figure 2.7: (a) Time series with a change in parameter β1 of δ = −5 hitting at
t = 7; (b) Six multiplicative indicators: d{5} is significant at α = 0.01; (c) Next five
multiplicative indicators: d{7} is selected. (d) Add d{5} & d{7} with the outcome
that only d{7} is selected.

are almost the same as the DGP errors. The non-constant parameter
graphs shown in Figures 2.8(c) and (d) are where β1 was halved to five
at a point in the sample. It is not immediately obvious from ocular
econometrics (looking at the data) that the poorer fit in (c) is due
to a major shift in the parameter of the regressor, or precisely where
that occurred: t = 5 looks suspect but is not the switch date. Finally,
Figures 2.8(e) and (f) provide the corresponding graphs after MIS,
where d{7} was correctly selected. Fitting separately to t = 1, . . . , 6 and
t = 7, . . . , 12 delivers almost the same parameter estimates as MIS.2

Applying MIS delivers, noting that S{12}xt = xt:

ŷt = 4.89
(0.58)

S{6}xt + 4.89
(0.31)

S{12}xt + 5.34
(0.31) (2.13)

2Here, recursive graphs do in fact reveal the problem of parameter non-constancy.
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Figure 2.8: (a) Time series with model fit when constant parameters; (b) Residuals
from (a); (c) Time series and model fit when non-constant parameters; (d) Residuals
from (c); (e) Time series and model fit with MIS when non-constant parameters;
(f) Residuals from (e): All residuals on same scale.

revealing the shift was at t = 7 and was from β1 = 10 to β1 = 5. If
MIS+SIS is undertaken for T = 12, despite having 24 variables, the
same equation results, since the intercept is constant.

The fit and residuals from (2.13) are essentially the same as
Figures 2.8(a) and (b) despite the non-constancy, because the shift
in the parameter is correctly ‘picked up’ by MIS. Since xt has a mean
of zero and the intercept is constant, there is little difference between
the 1-step ahead forecasts with and without MIS, but a large difference
in the interval forecasts as Figure 2.9 records.

2.6.7 Designed-Indicator Saturation

Indicators for saturation approaches can be designed to match known
properties of a physical or social process under analysis, denoted VIS
for volcano-indicator saturation as applied to volcanic impacts in Pretis
et al. (2016). Their indicators have the form d′t = (0, . . . , 0, 1, 0.5,
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Figure 2.9: 1-step ahead forecast ±2σ̂f with MIS (solid error bar) and ±2σ̃f without
(dotted error bar).

0.25, 0.125, 0, . . . , 0) for t = 1, . . . , T , so the first commences with
(1, 0.5, 0.25, 0.125, 0, . . .) and so on. A saturating set of such indica-
tors were selected over to model the impacts of volcanic eruptions on
dendrochronological temperature reconstructions as follows.

Volcanoes erupt both gasses and material, and if sufficiently large
amounts are ejected high into the atmosphere, their emissions can
block solar radiation thereby reducing temperatures, sometimes on a
global scale. Because their ejected material gets gradually removed
from the atmosphere, the temperature ‘shape’ caused by an eruption is
relatively similar across different volcanoes, as illustrated by Figure 2.10.
The abrupt initial fall in temperature creates ‘outliers’ in temperature
reconstructions, such as that based on dendrochronology used here. To
locate statistically significant drops in temperature of a form likely to
be from a volcanic eruption, Pretis et al. (2016) ‘designed’ a saturating
set of indicators from the physical-theory shape of ν to match the
temperature response using dt above, an illustrative subsample of which
is shown in Figure 2.11.

The principle of selecting significant indicators from the VIS sat-
urating set is just like that for IIS. Although there is considerable
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Figure 2.10: Solar radiation patterns of some recent volcanic eruptions.
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Figure 2.11: Illustrative subsample of volcanic designed indicators.

uncertainty about the timings and magnitudes of some eruptions, VIS
saturation estimation can help correct dendrochronological temperature
records (see Schneider et al., 2017, for a new archive of large volcanic
events over the past millennium based on VIS). Figure 2.12 top panel
shows a temperature reconstruction since 1200.

The issue is whether the large drops coincide with volcanic eruptions.
Having detected significant indicators, many of these can be checked
against dates of known eruptions such as Tambora in 1816 (the year
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Figure 2.12: Top panel: Temperature data and the fit of the model; bottom panel:
Detected volcanoes, 1200–2000.

without a summer when it snowed in New Haven in July, Frankenstein
was written by Mary Shelley when stuck for months in a Swiss Chateau
from almost ceaseless rain and J. M. Turner painted his remarkable skies)
or Krakatoa in 1883. Figure 2.12 reports the outcome and the names
of the volcanoes detected applying VIS in a first-order autoregressive
model.

2.7 Summary of Saturation Estimation

This subsection summarizes saturation estimators under the null as
delivered by split half for the DGP yt ∼ IN[0, σ2

ε ], t = 1, . . . , T when
the model fitted to the first-half is given by yt =

∑T/2
j=1 γjd{j} + εt so no

intercept is included in the model. Here, d{j} denotes the appropriate
indicator. For IIS, d{j} = 1{j=t}, for SIS, d{j} = 1{j≤t}, for TIS d{j} =
1{j≤t}t and for MIS, d{j} = 1{j≤t}xt. Finally, the indicator form for the
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one example of VIS is d{t} in the previous subsection. The formulae
for the t-tests, tt, on the tth indicator under the null, as well as their
non-centralities, ψ1, for a single alternative, for all these saturation
estimators are derived in Castle et al. (2019a), who also record the
corresponding non-centrality, ψk, when applying those t-tests for a
known alternative.

Their analysis reveals the basic structure of the various indicator
saturation estimators and tt tests in a split-half analysis. All the sat-
uration methods transpire to estimate a weighted combination of the
current and next error (wj,tεt − wj,t+1εt+1). For example, the IIS es-
timate of the coefficient γ̂t of 1{t} can be written as (εt − 0εt+1) so
w1,t = 1 and w1,t+1 = 0 as each impulse exactly removes the corre-
sponding error. For SIS, w2,t = 1 = w2,t+1; for TIS, w3,t = t−1 and
w3,t+1 = (t + 1)−1; and for MIS with a regressor zt, w4,t = z−1

t and
w4,t+1 = z−1

t+1 so the estimate can be erratic for near-zero zt; and for
VIS, w5,t = 1 and w5,t+1 = 0.5 (ignoring smaller weights on εt+i). Thus
SIS is MIS for the constant, and TIS is MIS for the trend, two important
special cases. The resulting tt tests are then a scaled combination of
the weighted current and next error, albeit with different weights. The
‘future’ only appears to be included because the steps are defined as
cumulating the impulses up to the given time, so induce forward differ-
encing: using the isomorphic reverse formulation would lead to backward
differencing.

Because impulses are mutually orthogonal, γ̂t for IIS will be the
same under the null as when a single impulse indicator is included at
t. However, for SIS, when only a single step is included at T1, γ̂T1 becomes
(ε(1) − ε(2)) where ε(1) = T−1

1
∑T1
t=1 εt and ε(2) =

(T − T1)−1 ∑T
t=T1+1 εt, so has the same form, but would have a much

smaller variance. Similar changes occur for the other cases when a single
indicator is used, although under the null such formulae are not overly
insightful.

More importantly are the non-centralities, ψ1 when split-half sat-
uration estimation is applied and the break occurs in the first half of
the sample at T1 ≤ T/2. The comparable non-centrality, ψk, is that
of a t-test for the known form, timing and length of break, which
would also apply when the saturation estimator found precisely the
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correct outcome. As Hendry and Santos (2005) note, for the IIS t-test,
ψ1 = ψk so both are inconsistent. For the other saturation estimators,
ψ1 ≤ ψk, so selection is essential to eliminate irrelevant but highly
collinear indicators and improve potency over split half. For SIS, the
non-centrality is increased by

√
2T1 from correct selection, with similar

large improvements for the others. In practice, breaks are often detected
at dates close to the actual occurrence rather than the precise date
since errors with the opposite signs to a shift can delay detection or
bring forward the apparent end, whereas with the same sign can lead
to an earlier start or later end. The analysis around (2.10) explained
why. Consequently, when simulating saturation estimators, we usually
calculate the potency for the actual date ± a few periods.

The resulting rejection frequencies depend on the choice of α and
correctly retaining all other relevant variables. When only IIS is used, but
there is a location shift, many similar magnitude, same-sign indicators
may be retained, and these can be costlessly combined at their average
value—this will be almost the same outcome as applying SIS: see Hendry
and Santos (2005).

Conversely, using SIS when there is a single outlier requires two
indicators to characterize it. As noted above, such indicators can be
combined manually to recreate an impulse indicator; alternatively, super
saturation can help avoid that, but at the cost of a tighter α and
hence potential loss of potency for smaller breaks. All these aspects are
illustrated in Section 7.

When IIS and SIS are applied in a system, as in Section 6, indicators
are retained by a likelihood-ratio test, so depend on their significance in
the system as a whole not in any individual equation therein. However,
an unrestricted VAR can be estimated an equation at a time, so satura-
tion estimation can also be applied an equation at a time and compared
to the system selection to see if very different shifts or outliers occur in
different equations. All selection decisions in both settings are based on
likelihood-ratio tests as described in §2.3, albeit these often coincide
with conventional t-tests, which allows a seamless transition between
classes of models.
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2.8 Selecting Simultaneous Equations Models

A simultaneous equations representation is a model of a system of
n variables, yt, that are to be modeled as endogenous by m other
variables, zt, that are non-modeled. The properties of such systems were
first analyzed by Haavelmo (1943), and are a potential representation
when modeling the local data generation process (LDGP: see §2.1, and
Hendry, 2009, 2018). To validly condition on zt requires that those
variables are known to be at least weakly exogenous (see Koopmans,
1950b, and Engle et al., 1983). In essence, the weak exogeneity of zt
requires that the DGP of zt does not depend on the parameters of
the DGP of yt conditional on zt. When the status of zt is not certain,
as with CO2 in Section 6, zt should be treated, at least initially, as a
component of yt. The strong exogeneity of zt, as applies to the orbital
drivers in Section 6, requires that their DGP also does not depend on
lagged values of yt, in which case non-linear functions of the zt can also
be included as ‘conventional’ conditioning determinants of yt.

A dynamic representation of the system (yt, zt) can be formulated
as a vector autoregression (VAR) conditional on the zt (often denoted
by VARX), lags of all the variables, and deterministic terms such as
intercepts and any indicator variables, denoted dt:

yt = Ψ0zt +
s∑
j=1

Ψjzt−j +
s∑
i=1

Γiyt−i + Adt + ut (2.14)

where ut ∼ INn[0,Ωu]. The assumptions on the error process require
that s is sufficiently large to create a martingale difference process,
and the variables included in dt remove any outliers, location shifts
and parameter changes not captured by the other regressors so that
homoskedasticity and constant parameters are viable. Then given that
zt is weakly exogenous, the error process will also be uncorrelated with
the regressors.

To check the specification of (2.14), the system should be tested for
congruence: once the initial system is congruent, all later reductions of
it should be congruent as well to avoid relevant information being lost.
Next, a parsimonious version of the system in (2.14) can be selected,
while ensuring that congruence is maintained (denoted PVARX): Hendry
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and Mizon (1993) propose evaluating such dynamic models by their
ability to encompass the VAR. Since the initial system is identified,
all later non-simultaneous reductions from eliminating insignificant
variables must be as well. At this selection stage, the system should
also have been reduced to a non-integrated (I(0)) representation so that
conventional critical values can be used: if the data are I(1), cointegration
and differencing can do so: see e.g., Johansen (1995), and Doornik and
Juselius (2018).

A system like (2.14), also called the ‘reduced form’ in the economics
literature, is always identified, so that multivariate least-squares esti-
mators of its parameters are unique, and under these assumptions will
deliver consistent estimates. A simultaneous equations representation is
a model of the system derived by reduction from (2.14). However, in
economics there is often a pre-specified theory of that representation
from which the ‘reduced form’ is derived (hence the terminology), in-
verting the correct order of the relationship between the system and a
model thereof.

Written in a concise notation, with the N × 1 vector wt denoting
all the right-hand side variables, the system in (2.14) is:

yt = Πwt + ut where ut ∼ INn[0,Ωu]. (2.15)

Then a simultaneous-equations model of (2.15) is a reduction to:

Byt = Cwt + εt where εt ∼ INn[0,Σε], (2.16)

with:
BΠ = C and Σε = BΩuB′. (2.17)

A necessary condition for (2.17) to be solvable is that there are no more
non-zero parameters in B and C than the n×N in Π, which is called
the order condition. In addition, when the rank condition discussed in
§2.8.1 is satisfied, B and C have a unique relation to Π and (2.16) is
fully identified. We use ‘structure’ (in quotation marks) to denote an
equation with more than one endogenous variable as in (2.16), without
any claim that it is a structural equation in the sense of being invariant
to extensions of the information set for new variables, over time, and
across regimes. A simultaneous-equations model like (2.16) then needs
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to be estimated appropriately, because including the ith endogenous
variable in the equation for the jth will induce a correlation with its
equation error. An infinite number of possible estimation methods
exists, characterized by the estimator generating equation in Hendry
(1976). Here we use full information maximum likelihood (FIML) first
proposed in Koopmans (1950a). The general formulation and estimation
procedures underlying FIML are described in Hendry et al. (1988).
Since a simultaneous-equations model is a reduction from the system,
automatic model selection is applicable as discussed in Hendry and
Krolzig (2005): Doornik and Hendry (2017) propose an algorithm for
doing so based on the multi-path search procedure of Autometrics, a
variant of which is applied in Section 6.

2.8.1 Identification

Identification, in the sense of uniqueness of B,C, in systems like (2.16)
given Π has been extensively explored in the econometrics literature: see
e.g., Fisher (1966), Koopmans (1949), Koopmans and Reiersøl (1950),
and Rothenberg (1973) inter alia. The rank condition for identification
determines the extent to which each equation is or is not identified.
In that literature, identification is usually a synonym for uniqueness,
although usage also entails connotations of ‘interpretable in the light of
subject matter theory’ and ‘corresponding to reality’ (as in ‘identify a
demand curve’, as opposed to a supply relation, or a mix). Whether or
not B,C in (2.16) can be recovered uniquely from Π in (2.15) requires
the exclusion of some different variables in every equation and the
inclusion of some others, otherwise linear combinations of equations
cannot be distinguished.3 Given the appropriate exclusions and inclu-
sions corresponding to particular elements of B and C being zero, the
rank condition is then satisfied so (2.16) is fully identified. Consequently,
B and C are uniquely related to Π, which entails restrictions on the Π
matrix in (2.15). The system for the three ice-age variables in Section 6

3Other forms of restriction than exclusions could identify ‘structural’ parameters
that do not directly satisfy the rank condition, such as a diagonal error covariance
matrix, or cross-equation links, but these are not considered here.
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is highly overidentified, so all the yi,t, i 6= j can be included in equations
for yj,t, j 6= i.

To ensure a unique relationship and hence avoid ‘spurious identifica-
tion’ of a simultaneous representation, all the right-hand side variables
need to be significant at a reasonable level both in the system and in
their associated equations. Otherwise, claiming identification by exclud-
ing insignificant regressors from any equation based on their apparent
presence in other equations, when in fact they are also insignificant
there, will be misleading when such variables are actually irrelevant
to the system as a whole. Throughout selection of a simultaneous rep-
resentation, the rank condition for identification can be imposed as a
constraint, both to ensure that essentially the ‘same equation’, but with
different normalizations, is not included twice, and that at every stage,
the current form is identified (see Hendry et al., 1988).

There are three possibilities of lack of identification, just identifica-
tion, and over identification (subsets of parameters could be identified
or not when others are the converse, in which case the following com-
ments apply to the appropriate set). When B, C are not identified,
then (2.15) is the least restricted but still fully identified, representation.
Any just-identified simultaneous representation with a form like (2.16)
will also be minimally identified, so there is an equivalence class of
such specifications with equal likelihood (see e.g., Rothenberg, 1971),
although in such a setting, reductions may be possible by eliminating
irrelevant regressor variables from the entire system.

When B,C are over identified by the rank condition, then (2.16)
is a unique representation for the given restrictions. However, Hendry
et al. (2009) show there may exist different sets of restrictions embodied
in matrices B∗, C∗ which are not linear transforms of B, C (precluded
by their identifiability), but under which (2.16) is equally over identi-
fied. Thus, again an equivalence class of such specifications with equal
likelihood can result: a given degree of over identification by itself does
not ensure a unique model even when there is a unique DGP. The
validity of any set of over-identified restrictions can be checked through
parsimonious encompassing of the system by the ‘structure’. When L
is the log-likelihood of the system (2.15), and L0 that of the ‘struc-
tural’ form (2.16), in stationary DGPs, the test is 2(L − L0) ∼ χ2

OR(s)
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for s over-identifying restrictions (see Hendry and Mizon, 1993, and
Koopmans, 1950a).4

2.9 Forecasting in a Non-Stationary World

We will undertake forecasts for both major illustrations below, so need
to address two key aspects of wide-sense non-stationarity. First, it
affects forecasting directly though the different approaches needed to
select models for such data as discussed in the preceding subsections;
and secondly, because the observations to be forecast will also be non-
stationary, different forecasting devices may be required. Specifically,
location shifts at or near the forecast origin can lead to forecast failure
as emphasized by Clements and Hendry (1998), as of course can shifts
that occur after forecasts are made. Systematic forecast failure, defined
as when forecasts are significantly different from the later outcomes
compared to their ex ante forecast intervals, is mainly caused by direct
or induced shifts in the long-run means of the variables being forecast.
We have suggested saturation estimation during model selection as a
complement to cointegration to jointly handle non-stationarity in-sample.
In this subsection, we describe both the consequences for forecasts of not
handling location shifts near the forecast origin, and consider forecasting
devices that are more robust than ‘conventional’ methods after such
shifts.

Almost all econometric model formulations are implicitly or ex-
plicitly equilibrium correction: this huge class includes regressions, au-
toregressions, VARs, cointegrated systems, dynamic stochastic general
equilibrium models (DSGEs), autoregressive conditional heteroskedas-
ticity error processes (ARCH) and generalizations thereof like GARCH.
For example, a stationary scalar first-order autoregression of the form:

yt = ρ0 + ρ1yt−1 + εt = µ+ ρ1(yt−1 − µ) + εt, (2.18)

where εt ∼ IN[0, σ2
ε ] with |ρ1| < 1, and µ = ρ0/(1− ρ1) is the long-run

mean, so E[yt] = µ, can be rewritten as:

∆yt = (ρ1 − 1)(yt−1 − µ) + εt. (2.19)
4Hence the earlier advice to obtain an I(0) and constant representation of the

system.
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Since |ρ1| < 1, when yt−1 > µ then ∆yt < 0 and the process is brought
back towards µ, and similarly when yt−1 < µ. In that way, (2.19)
‘error corrects’, as such mechanisms are often called. Unfortunately, if µ
changes to µ∗ say, (2.19) will still equilibrium correct towards µ and
will continue to do so until revised to replace µ by µ∗, so does not error
correct to the new long-run mean.

Should such a shift occur at the forecast origin yT , where ρ1 changes
to ρ∗1 so µ∗ = ρ0/(1− ρ∗1) then the next observation will actually be:

∆yT+1 = (ρ∗1 − 1)(yT − µ∗) + εT+1, (2.20)

whereas from (2.19), the 1-step ahead forecast will have been (ignor-
ing parameter estimation uncertainty for simplicity as second order
compared to the shift):

∆̂yT+1 |T = (ρ1 − 1)(yT − µ), (2.21)

leading to the forecast error ε̂T+1 |T = ∆yT+1 − ∆̂yT+1 |T :

ε̂T+1 |T = (ρ∗1 − 1)(yT − µ∗)− (ρ1 − 1)(yT − µ) + εT+1

= (1− ρ∗1)(µ∗ − µ) + (ρ∗1 − ρ1)(yT − µ) + εT+1, (2.22)

and since E [yT − µ] = 0:

E[ε̂T+1 |T ] = (1− ρ∗1)(µ∗ − µ) 6= 0 if µ∗ 6= µ. (2.23)

Thus, (2.21) fails to correct the error induced by the location shift.
An error like (2.23) will persist in future periods if the in-sample

model is used unchanged as:

∆̂yT+2 |T+1 = (ρ1 − 1)(yT+1 − µ), (2.24)

whereas:
∆yT+2 = (ρ∗1 − 1)(yT+1 − µ∗) + εT+2,

so that letting ∇ρ1 = ρ∗1 − ρ1 and ∇µ = µ∗ − µ:

ε̂T+2 |T+1 = (1− ρ∗1)∇µ+∇ρ1(yT+1 − µ) + εT+2, (2.25)

with:
E[ε̂T+2 |T+1] = (1− ρ∗1)(1 +∇ρ1)∇µ,



2.9. Forecasting in a Non-Stationary World 201

because:

E[yT+1 − µ] = E[(ρ∗1 − 1)(yT − µ∗)] = (1− ρ∗1)∇µ.

Similar mistakes of not error correcting after a shift in the long-run
mean will affect all members of the equilibrium-correction class.

A surprising feature of these second period 1-step ahead forecasts
in (2.24) is that if (say) ∇µ < 0 so there has been a downward shift
in the long-run mean, then:

E[ŷT+2 |T+1 − yT+1] = −(1− ρ1)(1− ρ∗1)∇µ ≥ 0, (2.26)

so that on average, ŷT+2 |T+1 ≥ yT+1, and the next forecast is usually
above the previous outcome, and conversely when ∇µ < 0. This creates
a ‘hedgehog’ effect in the graph of forecasts around outcomes, and is
caused by (2.19) correcting to the old equilibrium µ and hence in the
opposite direction to µ∗.

Figure 2.13(a) illustrates with computer generated data on a model
matching (2.18) where ρ0 = 10 and ρ1 = 0.65, but here ρ0 is changed
to ρ∗0 = 6 which again shifts µ, now from 28.6 to 16.1 at observation
t = 86 and back to its original value at t = 96 to create a ‘recession’
like pattern. The forecasts are based on an in-sample model matching
the DGP with estimated values of ρ̂0 = 10.6 and ρ̂1 = 0.63, so are close
to the DGP parameter values. The forecast failure from ŷT+h |T+h−1 is
marked as all the outcomes from t = 86, . . . , 96 lie outside the 95% error
bars, and the forecasts come back to the data only after the shift ends.
To illustrate the ‘hedgehog’ effect, lines are drawn from the outcomes at
t = 86 and t = 87 to the corresponding forecasts for the next periods,
both of which lie well above the previous observed values.

Figure 2.13(a) also records the forecasts from a robust device defined
for h = 2, . . . ,H by (see Hendry, 2006):

ỹT+h |T+h−1 = yT+h−1 + ρ̂1∆yT+h−1

= yT+h−1 + ρ̂1(yT+h−1 − yT+h−2), (2.27)

which are dramatically better over the shift period with a 33% smaller
root mean-square forecast error (RMSFE) overall. So why does a mis-
specified ‘model’ like (2.27) forecast better than the estimated in-sample
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Figure 2.13: (a) Successive 1-step ahead forecasts after a location shift at t = 86
and back at t = 96 for both ‘conventional’, ŷT+h |T+h−1, and ‘robust’, ỹT+h |T+h−1,
forecasts; and (b) 10-steps ahead forecasts, ŷT+h|T+h−10, to highlight the hedgehog
effect.

DGP? An explanation follows from comparing the second expression
in (2.18) with the second expression in (2.27), which reveals that the
first long-run mean µ in the former is replaced by the ‘instantaneous’
estimator yT+h−1 and the second by yT+h−2. These are very noisy but
unbiased estimators when there is no shift in µ, and highly adaptive
estimators of µ∗ after a shift. Simplifying by ignoring parameter estima-
tion, and taking expected values, when µ shifts because of a constant
ρ1 but changed ρ0, then forecasting from T + 1 to T + 2:

E[ỹT+2 |T+1] = E[yT+1] + ρ1E[∆yT+1] = µ∗ − ρ2
1∇µ, (2.28)

since:

E[yT+1] = µ∗ − ρ1∇µ and E[∆yT+1] = (1− ρ1)∇µ,

then for ε̃T+2 |T+1 = yT+2 − ỹT+2 |T+1 as E[yT+2] = µ∗ − ρ2
1∇µ:

E[ε̃T+2 |T+1] = µ∗ − ρ2
1∇µ− (µ∗ − ρ2

1∇µ) = 0,
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as against:
E[ε̂T+2 |T+1] = (1− ρ1)∇µ.

In Section 7, we forecast by both the equivalent of (2.21) and (2.27).
The robustness depends on forecasting later than the shift, and does
not improve the forecast from T as Figure 2.13(a) shows. Although
the algebra does not simplify neatly when ρ1 changes, the principle is
the same and much of the error cancels unless the dynamics change
greatly. However, the robust device in (2.27) is noisy and over-shoots
when a shift ends, and an improved device is proposed by Martinez
et al. (2019).

Castle et al. (2015a) re-interpret (2.27) as:

ỹT+h |T+h−1 = µ̃a + ρ̂1(yT+h−1 − µ̃b), (2.29)

where µ̃a and µ̃b can be estimated by averages of past data rather than
just a single data point. Then (2.29) defines a class of forecasting devices
where µ̂ is the full sample average based on T observations, through
to (2.27) which is based on one data point. Equally, combinations of
several members of a robust class could be used, as using longer averages
in estimating µ entails slower adjustment, but less volatility, as does
forecast combination in general.

Figure 2.13(b) records 10-steps ahead forecasts to highlight the
hedgehog effect: well above during the drop in the variable to be forecast,
and well below during the rise (an upside-down hedgehog). The former
is similar to the substantive over-forecasts of productivity by the UK
Office of Budget Responsibility since 2008, not adjusting to the ‘flat-
lining’ seen in §2.6.5 above, much improved by the device in Martinez
et al. (2019).

Another example of forecasting through breaks is provided in Fig-
ure 2.14 for the eruption in 1641 of volcano Parker in the Philippines.
The model using VIS to detect volcanic eruptions was described in §2.6.7,
and the Figure shows the forecasts from the first-order autoregression
(denoted AR(1)) without saturation estimation, and that model with the
detected indicator selected from the single observation at the eruption
date. As can be seen, the AR(1) without the break indicator forecasts a
rise as derived from the theory above, whereas that with the VIS form
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Figure 2.14: Forecasting through the example eruption in 1641 of volcano Parker
in the Philippines.

estimated just from the initial fall does a reasonable job of tracking
the temperature recovery despite forecasting six periods ahead from an
indicator fitted to a single data point. Because the break pattern is very
different from a location shift, the robust device described in (2.27) also
performs poorly, although its forecasts are not shown.



3
Some Hazards in Empirical Modeling of

Non-Stationary Time-Series Data

We describe some of the hazards that can be encountered when empiri-
cally modeling non-stationary time-series data, with potential implica-
tions for analyzing observations on climate variables. Most importantly,
the degree of integration of time-series data need not be constant, as
integrability is a derived, not an intrinsic, property of a time-series
process, a key issue addressed in this section. Other hazards include
unmodeled shifts in relationships, or more generally, incorrectly modeled
relations omitting substantively important explanations; data measure-
ment errors; and aggregation bias. Any of these can seriously distort
empirical statistical studies, leading to mistaken inferences and hence
fallacious conclusions, and possibly false causal attribution. We use
an example from societal behavior related to climate change (vehicle
distances traveled) to illustrate how false implications can arise, even
when an analysis is undertaken in a substantive and well understood
framework, not ‘mere data mining’, and to explore the possibility of
revealing such problems. To highlight as many hazards as possible in a
simple example, the section is written like a ‘detective’ story where a
potential culprit is only revealed towards the end.
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Figure 3.1: Change in the radiative forcing measure of CO2.

Our analysis of what can go wrong with an empirical statistical
study builds on the critique by Pretis and Hendry (2013) of the claimed
absence of links between temperature and radiative forcing of greenhouse
gases in Beenstock et al. (2012). Those authors used the measure of the
changes in the radiative forcing of CO2 shown in Figure 3.1, merging
ice-core based data with Charles Keeling’s direct atmospheric readings
(discussed below). The time-series properties of the subperiods are
clearly different: the data up to 1958 seem to be I(0) around a level,
and after are trending up with a much larger variance. Combining the
two sub-samples suggests that the overall sample is I(2), and as the
temperature time series is I(1) Beenstock et al. claim it cannot be caused
by radiative forcing despite the well-established theory to the contrary.

Pretis and Hendry (2013) highlighted the hazards that can be
encountered in statistical analyses by an example that implies the absurd
conclusion that moving vehicles do not cause human road fatalities,
to match the equally absurd ‘proof’ that greenhouse gases don’t cause
climate change. The examples of Venus, boiled by an excess of greenhouse
gases, and Mars, frozen by a lack thereof, are notable extremes. Here,
we address the problems that can be encountered in empirical modeling
using their road fatalities example as one where the link to moving
vehicles is not to our knowledge disputed.

For millennia, from horse-drawn carriages to engine-driven vehicles,
collisions with people have injured and killed them, vastly more so as
cars initially proliferated. Figure 3.2 updates the UK data in Pretis
and Hendry (2013) for total vehicle distances driven in billions of
kilometers p.a. (denoted Dt) and road fatalities (Ft) to 2017, with
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Figure 3.2: (a) Road fatalities p.a. in the UK (Ft); (b) its first differences (∆Ft);
(c) vehicle kilometers driven p.a. in billions (Dt); and (d) its first differences (∆Dt).

six new observations since their earlier analysis for an out-of-sample
evaluation. The four panels labeled a, b, c, d respectively show Ft,
∆Ft = Ft − Ft−1, Dt and ∆Dt.

Data on UK road fatalities are only available continuously from
1979 onwards and previously were interpolated from intermittent data,
as the graph of ∆Ft reveals. The ‘blocks’ and large jumps suggest major
data measurement errors, changing its time-series properties, although
only observations from 1949 can be used in the regressions below given
the shorter sample on Dt. It is also manifest from their graphs that Ft
and Dt are highly non-stationary with changing means and variances,
and have strong opposite trends. If an empirical analysis is undertaken
of these two variables, absent subject-matter knowledge, then it ‘proves’
that greater distances driven by vehicles each year lead to fewer road
deaths.

We establish that finding by a statistical analysis of these two
variables that includes testing for cointegration, checking the constancy
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and invariance of the relationship, and conditional forecasting of the six
new observations on fatalities given the traffic data. The empirical model
passes all the required tests, providing a near congruent explanation that
even satisfies a test for invariance to large shifts in Dt. This example
also serves to establish our notation. The aim is to stress that however
sophisticated a statistical analysis may appear to be, the implications
have to be understood in a substantive context: the claims that road
fatalities are not caused by moving vehicles, or could be reduced by
vehicles driving greater distances, are both absurd.

Our illustration is a first-order autoregressive-distributed lag model
(ADL: see Hendry, 1995, Ch. 7), relating Ft to its first lag, Ft−1, a
constant, Dt and Dt−1 estimated by least squares over 1951–2011:

F̂t = 728
(169)

+ 0.912
(0.022)

Ft−1 + 12.3
(3.16)

Dt − 13.7
(3.2)

Dt−1

σ̂ = 163, R2 = 0.99, FAR(2, 55) = 3.53∗
χ2

nd(2) = 3.66, FHet(6, 54) = 1.17
tur = −4.08∗∗, FARCH(1, 59) = 0.02, FReset(2, 55) = 2.83.

(3.1)
In (3.1), estimated coefficient standard errors are in parentheses below
estimated coefficients, σ̂ is the residual standard deviation, and R2 is
the coefficient of multiple correlation: see §2.2.4 for model evaluation
test statistics.

All the estimated coefficients are highly significant in (3.1), there
is a near perfect fit, only one mis-specification test is significant at
even 5%, and the PcGive unit-root t-test, denoted tur, rejects the null
hypothesis of no cointegration at 1% (see Ericsson and MacKinnon,
2002). Moreover, the equation is constant over the new observations
with FChow(6, 57) = 0.06 where FChow is a parameter constancy forecast
test over 2012–2017 with a RMSFE of 42.1, which is a 1/4 of σ̂ in (3.1), so
the model fits the data that has arrived since Pretis and Hendry (2013)
far better than the previous sample. The long-run derived solution from
(3.1) is:

F̃ = 8257
(636)

− 15.7
(2.4)

D (3.2)

which has a negative effect from D. Thus, there is a long-run station-
ary relation between the non-stationary series of road fatalities and
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vehicle kilometers driven, such that road fatalities decrease with vehicle
kilometers driven.

Figure 3.3 records the fitted and actual values and 1-step ahead
conditional forecasts F̂T+h |T+h−1 | DT+h for h = 1, . . . , 6, the residuals
from (3.1) scaled by σ̂, with their histogram, density and correlogram.
There is residual autocorrelation, as well as visual evidence of some
residual non-normality and heteroskedasticity. Applying IIS and SIS at
1% (see §2.6), one outlier was selected for 1987, denoted 1{1987}, with
step shifts that ended in 1955 and 1995, denoted S{1955} and S{1995},
respectively, the first of these applying to a very short initial sample
that may not have been accurate. The outcome was a larger negative
impact of D on F , with no significant diagnostic tests.

To assess short-run effects, Pretis and Hendry (2013) estimated an
equilibrium-correction model using the derived long-run (cointegrating)
solution in (3.2), modeling the changes in road fatalities by changes of
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Figure 3.3: (a) Fitted, actual values and conditional forecasts of road fatalities p.a.
in the UK; (b) residuals scaled by σ̂; (c) scaled residual histogram and density with
N[0, 1]; and (d) residual correlogram all for (3.1).
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vehicle kilometers driven and deviations from the long-run equilibrium:

∆̂Ft = 12.3
(2.48)

∆Dt − 0.088
(0.012)

Q̃t−1 (3.3)

where Q̃ = F − F̃ , with a residual standard deviation of σ̂ = 160.
Equation (3.3) shows a short-run increase in deaths as vehicle kilometers
driven increase, with the long-run decrease embodied in Q̃.

3.1 Assessing the Constancy and Invariance of the Relationship

The first check is on the constancy of the relationship in (3.1). In
one interpretation, the step shifts S{1955} and S{1995} found above are
evidence against that hypothesis, although the former only applies
to four years. Conditional on their inclusion, the resulting recursive
estimates of the other four coefficients are remarkably constant as shown
in Figure 3.4.
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Figure 3.4: Recursive estimates of the coefficients of: (a) Ft−1; (b) constant term;
(c) Dt; and (d) Dt−1, with (e) 1-step residuals and recursive estimates of σ; and
(f) recursively computed Chow tests.
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To examine the possible ‘causal’ nature of (3.1), we next assessed
its invariance to large changes in Dt (see e.g., Engle and Hendry, 1993,
and Castle et al., 2017). Applying SIS to a first-order autoregression in
Dt over the whole period, four highly significant step indicators were
retained ending in 1985, 1989, 2007, and 2013 (p < 0.0002). Adding these
to (3.1) yielded an Fexclude(4, 57) = 1.79 which is insignificant. Thus,
a powerful test for invariance of (3.1) does not reject that hypothesis.
It would appear that Ft and Dt cointegrate in a congruent constant
relation that remains so outside the original data sample, and is invariant
to the large shifts in Dt. How can such powerful statistical evidence fly
in the face of the obvious falsity of the proposition that moving vehicles
decrease road fatalities?

The third check is whether the assumed degree of integration is
constant (here, I(1)). Merging data of ostensibly the same variable
from different measurement systems can alter the apparent degree of
integration, and that was a key problem with the Beenstock et al. (2012)
study. We use an augmented Dickey–Fuller test (ADF: see Dickey and
Fuller, 1981) with a constant but no trend, roughly splitting the sample
pre and post 1975. That for Ft over 1933–1975 yielded tadf = −2.74
which is close to the 5% significance level of −2.93 despite the small
sample, where the first lagged difference was highly significant with
t = 8.13. In the second period, tadf = −1.31 and no lagged differences
were significant, which is a marked change. Referring back to Figure 3.2,
the data behavior certainly changes noticeably after interpolation ends.
The converse happens with Dt, albeit the samples are even smaller.
Over 1951–1983, tadf = 0.06 whereas over 1984–2017, tadf = −3.96∗∗
with no lagged differences included, or tadf = −2.80 with a significant
first lagged difference. At best, the assumption of a constant degree
of integration is dubious. Including a trend in these tests alters the
outcomes such that the only near significant outcome is now for F in
the second period with tadf = −3.25 where the critical value is −3.52.

However, that check highlights a possible issue: by failing to include
a trend in the cointegration analysis, the formulation did not ensure
the test was similar (see Nielsen and Rahbek, 2000). In the present
conditional single equation specification, adding a linear trend to an
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unrestricted version of (3.3) leads to:

∆̂F t = 1834
(638)

− 0.154
(0.028)

Ft−1 − 1.16
(1.16)

Dt−1 − 9.55
(10.5)

t

+ 11.8
(2.94)

∆Dt − 438
(118)

S{1955}

R2 = 0.55, σ̂ = 151.9, FAR(2, 54) = 1.97, FARCH(1, 60) = 0.65
χ2

nd(2) = 2.82, FHet(9, 52) = 1.67, FReset(2, 54) = 1.90
(3.4)

with FChow(6, 56) = 0.09, where the remaining significant step indicator
has also been retained. While both the trend and Dt−1 are insignificant,
if Dt−1 is deleted, the result is:

∆̂F t = 2337
(389)

− 0.155
(0.028)

Ft−1 − 19.6
(2.94)

t + 11.6
(2.94)

∆Dt

− 463
(115)

S{1955}

R2 = 0.54, σ̂ = 151.6, FAR(2, 55) = 2.22, FARCH(1, 60) = 1.44
χ2

nd(2) = 3.06, FHet(7, 54) = 1.66, FReset(2, 55) = 2.18
(3.5)

with FChow(6, 57) = 0.85. This is at last interpretable: increases in road
traffic lead to increased fatalities, but the trend reduction in deaths is
due to cumulative improvements in many aspects of road safety.

There are many potentially relevant explanatory variables omitted
from a model simply relating road fatalities to distances driven. A par-
tial list affecting deaths from vehicle accidents would include improved
driving standards after 1935 from more stringent driving tests, increas-
ingly tough this century; safer cars with better brakes such as discs
from the mid 1950s, then anti-lock braking systems (abs) in the 1980s,
and improved crash impact designs; reduced fatalities from retractable
front seat belts, compulsory from 1983 (see the analysis in Harvey
and Durbin, 1986) and in the later 1980s from air bags; increasing
separation of opposite direction traffic flows on motorways from 1959
onwards; cameras at traffic lights as well as speed cameras; reductions
in drunk driving from electronic breathalyzer tests after 1967 and lower
acceptable alcohol limits; possibly heavier penalties for traffic violations;
and so on.
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In terms of reducing UK pedestrian fatalities, we note ‘zebra cross-
ings with Belisha beacons’ dating back to 1934, and pedestrian controlled
traffic lights in 1969 (often called pelican crossings in the UK); lower
speed limits in urban areas; better road safety training, especially for
children, etc. Converse effects come from faster cars; driver overconfi-
dence; driving after taking drugs; and recently driving, and even walking,
while using mobile phones etc. Also less has been done in the UK to
protect cyclists: although fatalities have decreased slightly this century,
the number of serious injuries has risen. Modeling total fatalities in-
volves changing aggregation biases from different sub-populations being
killed (pedestrians, pedal and motor cyclists, cars and other drivers) as
a consequence of the differential effects of the above changes.

Overall, the reduction from almost 8000 deaths p.a. in 1967 to
under 1800 in 2017 reflects these many factors cumulatively, although a
constant linear trend is obviously a crude approximate description (but
see the analysis of trends in Hendry, 1995, Ch. 15), and the pandemic
will create large location shifts in both ∆Ft and ∆Dt.

3.2 An Encompassing Evaluation of the Relationship

To discriminate between the two non-nested explanations by trend
or Dt−1, we use an encompassing test between (3.5) and (3.3) over
1950–2011, both with the three indicators. The formal analysis of
encompassing originates with Mizon and Richard (1986) who also relate
it to non-nested hypothesis tests: see Bontemps and Mizon (2008) for
a recent overview. The two hypotheses are denoted M1 which relates
∆Ft to 1, Ft−1, t, ∆Dt, S{1955}, 1{1987}, S{1995} with σ̂[M1] = 136.2
from (3.5), and M2 which relates ∆Ft to ∆Dt, Q̃t−1, S{1955}, 1{1987},
S{1995} with σ̂[M2] = 139.5 from (3.3) augmented by the indicators.
The instruments are the regressors of the joint nesting model: 1, Ft−1, t,
∆Dt, S{1955}, 1{1987}, S{1995}, Q̃t−1 with σ̂[Joint] = 134.0. The resulting
test statistics are shown in Table 3.1. The results reject M2 in favor
of M1, though not decisively. Nevertheless, the combined evidence is
consistent with a long-run trend decrease that is an approximation to
many safety improvements, despite increased distances driven causing
more fatalities.
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Table 3.1: Encompassing test statistics

Test Form M1 vs. M2 Form M2 vs. M1

Cox (1962) N[0, 1] −1.96∗ N[0, 1] −3.06∗∗
Ericsson (1983) IV N[0, 1] 1.70 N[0, 1] 2.58∗∗
Sargan (1964) χ2(1) 2.68 χ2(3) 7.13
Joint model F(1, 54) 2.77 F(3, 54) 2.57

Overall, the illustration highlights some of the difficulties that can
arise when not commencing from a sufficiently general model to embed
the local data generation process, albeit that formalizing the effects of
the many technological, social, educational and legal changes affecting
road safety would be hard. In wide-sense non-stationary processes, even
well-established tests like those for a unit root may implicitly make
untenable assumptions, such as a non-changing degree of integration,
leading to misinterpretations.

We now turn to the reasons for seeking to apply our tools to climate
modeling.



4
A Brief Excursion into Climate Science

The Earth’s climate depends on the balance between the sun’s incoming
radiation and the heat loss back to space. Short-wave radiation from
the Sun enters the Earth, warms the planet’s land and sea surfaces,
then heat is radiated back through the atmosphere to space. However,
greenhouse gases like CO2 absorb some of that long-wave radiation
en route, and that is then re-radiated, with some being directed back
towards the planet’s surface. Consequently, higher concentrations of
such greenhouse gases will increase the extent of re-radiation, raising
temperatures.1 The sun has itself warmed since its formation, increasing
the radiation reaching the Earth over geological time, but has been
relatively stable for the epoch of human (i.e., homo sapiens) existence.

The composition of the Earth’s atmosphere has also changed greatly
over geological time, altering radiation balances. That atmosphere
currently comprises the four major components of water vapor, nitrogen
(almost 80% of dry air), oxygen (about 20%) and carbon dioxide. There
are also smaller volumes of related greenhouse gases including nitrous
oxide, N2O, which is becoming an increasing component of greenhouse

1Myhre et al. (2001) review the radiative forcing of different greenhouse gases,
and e.g., Kaufmann et al. (2013) show that the stochastic trend in global temperature
is driven by the stochastic trends in anthropogenic forcing series.
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gases, methane, CH4, and various chlorofluorocarbons, CFCs, halons
and other halocarbons.2 These atmospheric components differ greatly
in their roles in retaining heat in our planet. Water vapor is crucial,
created by evaporation and providing rain, but also retaining heat: as
the climate warms, more evaporation will lead to greater heat retention
and more cloud cover, but that in turn will reflect back some of the
incoming radiation.

The roles in atmospheric heat retention of water vapor, carbon diox-
ide, and dry air (mainly nitrogen and oxygen) were elegantly demon-
strated by Eunice Foote in 1856, who filled separate glass jars with them
to compare how they heated when placed in sunlight. She showed that
the flask containing water vapor heated more than one with dry air, but
that carbon dioxide heated considerably more and took far longer to
cool. Her simple experiment could be demonstrated to school children
to explain why CO2 emissions are causing climate change, leading to the
worrying trend in global temperatures. Foote’s research predated that
of the confirming and more exact experiments by John Tyndall.3 The
physics of greenhouse gases was established by Arrhenius (1896), who
argued that the atmospheric change in temperature was proportional to
the logarithmic change in CO2 concentrations: Weart (2010) provides a
history of the discovery of global warming.

Next, nitrous oxide emissions have doubled in the last 50 years (see
e.g., U.S. Energy Information Administration, 2009) and are about 300
times more potent per molecule than carbon dioxide as a greenhouse
gas. Catalytic converters for car exhaust emissions oxidize and reduce
nitrogen oxides and carbon monoxide to CO2, nitrogen and water,
but can produce nitrous oxide when the exhaust system is cold or
malfunctioning. Excess fertilizer on fields that runs off into rivers and
lakes also releases nitrous oxide. The Black Sea is an indication of how
fast such problems can happen due to excess nitrogen and phosphates

2Despite being non-reactive, CFCs gained notoriety for destroying the ozone
layer by breaking down from ultraviolet radiation in the upper atmosphere. Although
the Montreal Protocol has led to a major reduction, they remain powerful greenhouse
gases by absorbing infrared radiation, as are substitutes like HCFCs. Nitrous oxide
also now poses a serious problem for the ozone layer: see Ravishankara et al. (2009).

3http://www.climatechangenews.com/2016/09/02/the-woman-who-identified-
the-greenhouse-effect-years-before-tyndall/.

http://www.climatechangenews.com/2016/09/02/the-woman-who-identified-the-greenhouse-effect-years-before-tyndall/
http://www.climatechangenews.com/2016/09/02/the-woman-who-identified-the-greenhouse-effect-years-before-tyndall/
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from run-off, with the anoxic layer reaching the surface and killing its
fish (see Mee, 2006), fortunately now tackled.

Lüthil et al. (2008) establish that methane concentrations in the
atmosphere are now double the levels seen over the past 800,000 years,
and that ‘strong correlations of methane and CO2 with temperature
reconstructions are consistent’ over that period. As noted in Hendry
(2011), go to any lake in northern Siberia, drill a hole in the ice and
hold a flame over it—but jump back quickly to avoid being burned
by the methane explosively catching fire. Melting the permafrost in
Siberia’s tundra could lead to a marked increase in global temperatures
(see Vaks et al., 2020). Methane is about 20 times as powerful as CO2
as a greenhouse gas, with a half-life in the upper atmosphere of around
15 years, as it gradually gets converted to CO2, so has a second effect
on climate. Current estimates of the world’s methane hydrates are over
6 trillion tonnes which is roughly twice the carbon content of all fossil
fuels.4

The proportions of all these components of the atmosphere have been
greatly altered over geological time by many natural processes, as well as
more recently by humanity. These natural processes include the evolution
of photosynthesis converting CO2 into energy and releasing oxygen,
thereby cooling the planet once iron oxidation was completed; massive
volcanism, releasing vast volumes of greenhouse gases and shorter-term
cooling particulates; and tectonic plate movements altering the locations
and depths of the oceans, which also play a key role through both heat
and CO2 absorption and release to maintain a temperature balance
with the Earth’s atmosphere. The consequences of these changes are the
subject of §4.2. First we digress to consider the possibility that despite
the magnitude of the planet and its apparently vast oceans, human
behavior has become a geological force, reflected in the suggestion of
renaming the current epoch from Holocene to Anthropocene.

4Methane hydrates are crystalline solids in which a gas molecule is surrounded
by a cage of water molecules that act as ‘cement’ at low temperatures and high
pressure.
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4.1 Can Humanity Alter the Planet’s Atmosphere and Oceans?

To answer the first part of the question in the title, we just need to look
at a satellite photograph of the atmosphere as in Figure 4.1. This shows
that our atmosphere is but a thin blue line atop the Earth, relatively as
thick as a sheet of paper round a soccer ball. Almost everyone knows that
the peak of Mt Everest at just over 29,000 feet (8,848 m) is above a height
where there is sufficient oxygen to sustain life, yet most people seem
to act as if the atmosphere is almost unbounded. Given how little air
there is, it should not come as a surprise that human economic activity
can alter the composition of the atmosphere to influence the Earth’s
climate, as our emissions of a variety of greenhouse gases like CO2,
N2O, CH4, and various CFCs have done—and are increasingly doing
so. Indeed, sulphur hexafluoride (SF6), widely used in the electricity
industry as an insulator to prevent short circuits and fires, is a very
long-lived gas estimated to be more than 20,000 times worse over a
century as a greenhouse gas than CO2, and is already leaking into the
atmosphere at almost double the rate of 20 years ago: see Rigby (2010).

Figure 4.1: Satellite photograph of the Earth’s atmosphere available from NASA.
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4.1.1 Anthropogenic Increases in Greenhouse Gases

Adding greenhouse gases to the atmosphere increases global temper-
atures, a growing concern reflected in the Paris Accord agreement
at COP21 to seek to limit temperature increases to less than 2 ◦C,
and ‘to pursue efforts to limit it to 1.5 ◦C’. The recent Special Re-
port by the Intergovernmental Panel on Climate Change (IPCC: https:
//www.ipcc.ch/sr15/) emphasizes that the latter is still just achievable,
but that rapid action is required if it is to be achieved. A comparison
of current with estimated atmospheric CO2 levels over the last 800,000
years of Ice Ages is informative as shown in Figure 4.2. Over the long
period shown, atmospheric CO2 varied over the range of roughly 175
parts per million (ppm) to 300 ppm, for reasons addressed in Section 6.

However, the recent CO2 records collected at Mauna Loa in Hawaii
by Charles Keeling from 1958 (see Keeling et al., 1976, and Sundquist
and Keeling, 2009), show a strong upward trend from more than 300 ppm
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Figure 4.2: Atmospheric CO2 levels pre-Industrialization and recent Mauna Loa
recordings.
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to now exceed 400 ppm: see CO2 Program Scripps (2010). These in-
creases in atmospheric levels of CO2 are clearly anthropogenic in origin,
as shown by the different isotopic ratios of CO2 from using fossil fuels
compared to its release from photosynthesis by plants. This matches the
attribution of CO2 emissions to human activity in (e.g.,) Hendry and
Pretis (2013), as the trend dominates the marked seasonal variation.
Plants absorb more CO2 in their growing seasons and release more as
they die back in winter. The marked seasonality which that creates is
due to the greater proportion of the planet’s land being in the northern
hemisphere. The climate change resulting from higher CO2 concentra-
tions has potentially dangerous implications, as highlighted by various
IPCC reports,5 and many authors including Stern (2006), leading to
the agreement in Paris at COP21. Meinshausen et al. (2009) analyze
the difficulties of even achieving 2 ◦C as annual changes are increasing,
so Paris COP21 has not yet even slowed the growth of CO2 emissions.

How can we be sure human activity is responsible? Here is how. There
have been trend increases in our use of fossil fuels and in deforestation.
Since Suess (1953) it has been known that radioactive isotope carbon-
14 is created by cosmic rays in the upper atmosphere hitting CO2
molecules, after which the radioactivity gradually decays. Since coal
and oil deposits were laid down hundreds of millions of years ago, their
radioactivity has dissipated, so carbon dioxide released by their burning
lacks this radioactive isotope. The changing ratio of the isotopes of
carbon detected in the atmosphere would point directly at anthropogenic
sources. Unfortunately, atmospheric nuclear explosions have radically
altered that ratio, making it inapplicable as an indicator of human
fossil fuel consumption. However, the ratio of another heavier isotope,
carbon-13, relative to carbon-12 in atmospheric CO2 is also larger than
its ratio in fossil fuels, and is not affected by nuclear tests. Consequently,
if additional CO2 output is due to burning fossil fuels, the ratio of
carbon-13 to carbon-12 should be decreasing—as is occurring. Moreover
oxygen is needed for combustion, and matching the increases in CO2,
atmospheric levels of oxygen have been falling slowly, albeit from a
substantial level.

5See e.g., https://www.ipcc.ch/report/ar5/wg2/.

https://www.ipcc.ch/report/ar5/wg2/
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4.1.2 The Earth’s Available Water

Although the oceans seem vast—and seen from space, Earth is a blue
sphere—actually collecting all the Earth’s water makes but a ‘puddle’,
as Figure 4.3 shows. The spheres shown represent respectively:

(1) All water on Earth, in the largest sphere over western USA, a
mere 860 miles in diameter.

(2) All fresh liquid water in the ground, lakes, swamps, and rivers in
the sphere over Kentucky, just 169.5 miles in diameter.

(3) Fresh water in lakes and rivers in the tiny sphere over Georgia,
only 34.9 miles in diameter.

Imagine heating up these small spheres, or adding millions of tons of
plastic or other polluting substances to them, or make them absorb

Figure 4.3: Earth’s water resources. Credit: Howard Perlman, USGS; globe illus-
tration by Jack Cook, Woods Hole Oceanographic Institution © Adam Nieman.
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gigatonnes of CO2. It is easy to see how we can affect oceans, lakes
and rivers. These tiny spheres may seem to conflict with pictures of
apparently endless oceans shown on programs like Blue Planet, and
other films. But oceans are relatively shallow: the Atlantic is around
2.25 miles deep on average. The Pacific is wider and deeper at about
2.65 miles—at its deepest in the Challenger Deep of the Mariana Trench,
roughly 6.8 miles down—and holds 170 million cubic miles of water in
total, just over half the 330 million cubic miles of water in the largest
sphere shown in Figure 4.3.

From the narrower viewpoint of climate change, ocean warming,
sea-level rises and creating a weak carbonic acid are the three key issues.
The warming climate leads to thermal expansion and to loss of glaciers
and ice sheets over land. Based on satellite altimetry, the global mean
sea level has been rising since 1880 as seen in Figure 4.4. Although

Figure 4.4: Global mean sea level (GMSL) has risen more than 20 cm since 1880
and is now rising at 3.4 mm p.a. versus 1.3 mm p.a. over 1850–1992.
Source: CSIRO.
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there is uncertainty around early measures based on tide gauges, these
are dwarfed by the trend; and the later satellite altimetry matches the
trend for the overlapping period. Not only has that rise accelerated this
century to 3.4 mm per annum, future rises till about 2050 are inexorable
from the oceans’ gradual response to atmospheric temperatures already
achieved, though later rises depend on how much more greenhouse gas
is emitted.

To put that annual rise of 3.4 mm in context, dumping into the
world’s oceans a volume of earth, pebbles and stones equivalent to the top
five inches from the 9.1 million square miles of the land area of the
United States would raise sea levels by about 3.3 mm–once.6

Such rises have dangerous implications for populations living near
coasts from increases in the heights and frequencies of extreme sea
levels from combinations of high tides, wind-driven waves and storm
surges (see inter alia, Vousdoukas et al., 2018). What were rare flood-
ing events historically will occur more frequently after sea-level rises.
Failing adequate advance preparations, the risks to natural and human
systems from sea-level rise and extreme sea levels include flooded cities,
beach and cliff erosion, biodiversity loss, territorial losses (e.g., small
island nations), displacement of people, harm to physical and psycho-
logical health and well-being, and stress upon energy, transport and
communication systems (see e.g., Jackson and Hendry, 2018).7

Confirming that part of the reason for the rising sea level is that
Earth’s oceans are warming, recent measurements reveal that the ocean
heat content is higher than previously estimated and goes to a greater
depth: see Figure 4.6, Zanna et al. (2019) and Cheng et al. (2019). Not
only will thermal expansion be greater, warmer oceans threaten sea life,
from coral reefs (whose destruction is further exacerbated by increasing
carbonic acid) through a rise in the chemocline between oxygenated
water above and anoxic water below (see e.g., Riccardi et al., 2007).

6Testimony by Philip Duffy, President of Woods Hole Research Center before
the USA House Committee on Science, Space, and Technology, as reported by The
Washington Post, 17 May, 2018.

7Worse, it seems satellite measurements have overestimated coastal heights so
an extra 300 million people will be affected by sea-level rises by 2050: see https://
sealevel.climatecentral.org/news/new-study-triples-global-estimates-of-population-
threatened-by-sea-level-ri/.

https://sealevel.climatecentral.org/news/new-study-triples-global-estimates-of-population-threatened-by-sea-level-ri/
https://sealevel.climatecentral.org/news/new-study-triples-global-estimates-of-population-threatened-by-sea-level-ri/
https://sealevel.climatecentral.org/news/new-study-triples-global-estimates-of-population-threatened-by-sea-level-ri/
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4.2 Climate Change and the ‘Great Extinctions’

A number of major extinction events have occurred over geological
time when many of the world’s life-forms ceased to exist, defined as
their permanent disappearance from the fossil record. That record is
incomplete, as the recent spate of discoveries of fossils of new dinosaur
species in China attests; and disappearance is not final, as revealed by
the curious tale of the rediscovery of a living coelacanth, previously
thought extinct for about 70 million years (see Thomson, 1991, for
that exciting story). Although dating is difficult for very distant events,
and species go extinct intermittently in the absence of major events,
the vast numbers of marine and land species vanishing over several
relatively short geological time intervals is convincing evidence of ‘great
extinctions’.

‘Mass extinctions’ occurred even before land life evolved, including
in the pre-Cambrian era, before about 600 mya (million years ago).
That was so severe that almost all micro-organisms vanished, possibly
from large scale cooling and global glaciation (called ‘snowball Earth’:
see Hoffman and Schrag, 2000). The Cambrian period then appears to
have suffered four more major marine extinctions, possibly also from
global sea cooling.

These early disasters were followed by five others over the next 500
million years, shown by the labeled peaks in Figure 4.5. Figure 4.5
shows one estimate of the percentage of species vanishing from the fossil
record, a clear demonstration of the fragility of life forms to the major
climate changes that occurred at the boundaries of the Ordovician,
Devonian, Permian, Triassic and Cretaceous periods.

The first of the five mass extinctions came at the end of the Or-
dovician period, approximately 440 mya (dates rounded for simplicity),
again probably from global cooling, possibly followed by warming. The
next, about 375 mya, occurred toward the close of the Devonian pe-
riod, probably from the rapid spread of plant life on land reducing
atmospheric CO2 by photosynthesis.

The third mass extinction at the Permian–Triassic (P/Tr) boundary
around 250 mya was the worst, leading to major losses of both ocean
life and plants, animals, and insects on land (see inter alia, Erwin, 1996,
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Figure 4.5: Fossil record disappearances showing an ‘extinctions timeline’ at period
endings.
Source: https://courses.lumenlearning.com/wm-biology2/chapter/mass-extinctions/.

2006).8 Explanations include the formation of massive flood basalts
from extensive and prolonged volcanic eruptions, called large igneous
provinces (LIPs).9 The LIP in Siberia forming at that time covered in
excess of 2 million square kilometers with global temperatures about
6 ◦C higher than now. Methane hydrates released from relatively shallow
continental shelves by the formation of the LIP are a possible cause
(see e.g., Heydari et al., 2008). Magma pouring into seas may also have
disturbed deep ocean levels (see Ward, 2006). In particular, underwater
volcanism can induce oxygen deficiency when LIPs disrupt the ocean
conveyor belts (see Bralower, 2008). Extinctions from oceanic warm-
ing can become drastic if the chemocline between oxygenated water
above and anoxic water below reaches the surface (see e.g., Riccardi
et al., 2007). Then archaea and anaerobic bacteria, such as green-sulfur
bacteria, proliferate and can generate vast quantities of hydrogen sulfide

8Rampino and Shen (2019) present evidence that there was a further mass
extinction approximately 260 mya associated with the eruption of the Emeishan
flood basalts in China, which time corresponds to the ‘bump’ before the end-Permian
great extinction in Figure 4.5.

9These can form layered hills looking a bit like stairs, called Traps.

https://courses.lumenlearning.com/wm-biology2/chapter/mass-extinctions/
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(H2S), which is almost as toxic as hydrogen cyanide. As with CO2,
hydrogen sulfide is heavier than air, so can accumulate on the surface.10
There is evidence that the chemocline rose during the end-Permian ex-
tinction, with a large increase in phototrophic sulfur bacteria replacing
algae and cyanobacteria, consistent with huge loss of ocean life.11 Ocean
circulation may also have slowed, or even stopped, from a lack of ice at
the poles. While that initially affects marine life, CO2 dissolves more
readily in cold water, and is released when water warms (as from an
open glass of sparkling water): a massive overturn of cold oceanic water
can release large quantities of CO2, warming the atmosphere.

The fourth extinction at the end of the Triassic period, roughly 200
mya, helped the dinosaurs to emerge as a dominant life form in the
Jurassic (see e.g., Brusatte, 2018). The cause is possibly the formation of
a massive LIP called the Central Atlantic Magmatic Province, covering
over eleven million square kilometers. The mass extinction could have
been due to extensive CO2 emissions from the dissociation of gas
hydrates inducing intense global warming, as there is some evidence
of a rise in atmospheric CO2 near the Triassic–Jurassic boundary, or
alternatively from sulfur dioxide emissions leading to cooling, but doubt
remains about the cause and mechanism.

The fifth and perhaps best known major extinction occurred ap-
proximately 60 mya at the Cretaceous–Tertiary (K/T) boundary (now
called Cretaceous–Paleogene, K-Pg), when the family of dinosaurs called
saurischia went extinct. This extinction could plausibly be attributed
to a meteoric impact, matching traces of iridium found between rocks
separating dinosaur from mammalian epochs, and the discovery of the
Chicxulub crater near the Yucatan peninsula. Even so, volcanism may
also have played a role, as that time saw the formation of another LIP in
India (the Deccan Traps), where a prolonged magma extrusion covered
approximately 100,000 square kilometers by about 160 meters deep,

10As noted above, recent behavior of the Black Sea shows how quickly a switch
in the chemocline can lead to the anoxic layer reaching the surface (see Mee, 2006).
The eruption of sulfur bacteria round China’s southern coast just before the 2008
Olympics is a more worrying example, although that too might have had similar
local causes.

11H2S also attacks the ozone layer if driven to the upper atmosphere (possibly by
volcanism), reducing protection from solar radiation.
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and global temperatures that were about 4 ◦C higher than currently
(see e.g., Prothero, 2008, for an evaluation).12 Ward (2006) shows that
the extinction at the end of the Triassic began when atmospheric CO2
was just above 1,000 ppm, and that at the K-Pg boundary when CO2
was just under 1,000 ppm, both far above the level of under 300 ppm
at the end of the last ice age, and just over 400 ppm now.

The fossil record over the past 520 million years as presently known
shows that terrestrial and marine biodiversity was related to sea-surface
temperature, with biodiversity being relatively low during warm periods
(see Clarke, 1993, and Mayhew et al., 2009). Climate change, manifested
by excessive global warming or cooling, has been a cause in all the above
large-scale species extinctions. Indeed, it is difficult to imagine any other
mechanism that would simultaneously exterminate both land and sea life
other than large shifts in global cooling or warming. The key is change:
though not anthropogenic, both directions have led to major losses of
species from the fossil record, although since life is abundant today, some
species have clearly always managed to survive and evolve. However, a
climate-change induced mass extinction could threaten the lives of mil-
lions of humans if species crucial to modern food chains were to vanish.

Since all the great extinctions seem due to global climate change,
albeit from possibly different causes, and since greenhouse gases lead to
temperature changes, what is the evidence for the accumulation of CO2
equivalents in the atmosphere? As discussed above, the records collected
at Mauna Loa in Hawaii (see Keeling et al., 1976 and Sundquist and
Keeling, 2009), show an unequivocal upward trend, with large seasonal
variations around it. Figure 4.2 showed the recent increases in CO2
levels from the low 300 parts per million (ppm) to near 400 ppm since
1958. As a consequence global mean surface temperatures have been
rising as seen in Figure 4.6(a), especially in the Arctic where a feedback
from ice melting lowers albedo and accelerates warming. Global ocean
heat content to a depth of 700 m shown in Figure 4.6(b) has been rising
rapidly over 1957–2012.

12The meteor may have struck an underwater oil deposit, ejecting huge quantities
of smoke and soot into the atmosphere; also the impact could have played a role in
the volcanism in India.
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Figure 4.6: (a) Global and Arctic mean surface temperature deviations in degrees
K since 1880; (b) global ocean heat content to a depth of 700 m over 1957–2012.

The oceans currently contain approximately sixty times more carbon
than the atmosphere, and from a geological perspective, some of that
CO2 can be exchanged quite rapidly between the atmosphere and
oceans. Moreover, although oceans can probably absorb more CO2 at
present, that may have adverse effects for marine life (see Stone, 2007):
acidification slows the growth of plankton and invertebrates, which are
basic to the ocean food chain. Lower pH levels could prevent diatoms
and coral reefs from forming their calcium carbonate shells (e.g., just
from lowering the current pH level of 8.1 to pH of 7.9). Moreover,
while oceans rapidly absorb CO2 initially, much is evaporated straight
back into the atmosphere (again think sparkling water left unsealed),
and while later recycled, takes a long time before much is stored in
deep ocean layers. So how has humanity created this potentially dire
situation of adverse climate change? The next section addresses that
development.



5
The Industrial Revolution and Its Consequences

The ‘Industrial Revolution’ began in the UK in the mid-18th century for
reasons well explained by Allen (2009, 2017). While its antecedents lay
several centuries earlier in the many scientific, technological and medical
knowledge revolutions, the UK was the first country to industrialize
on a large scale. The startling consequences of that step can be seen
everywhere 250 years later: real income levels are 7–10 fold higher per
capita as shown in Figure 5.1, many killer diseases have been tamed,
and longevity has approximately doubled. The evidence recorded in
https://ourworldindata.org/economic-growth shows great increases in
living standards in many countries albeit these are far from evenly shared.
Nevertheless, the Industrial Revolution and its succeeding developments
have been of vast benefit to humanity, raising standards of living for
billions of humans far above levels dreamt of by earlier generations: see
the excellent discussion in Crafts (2003) who demonstrates that the
average individual living in the UK today would be unwise to swap
their life for that of even one of the richest people several centuries ago.

Unfortunately, an unintended consequence of the Industrial Revolu-
tion was an explosion in anthropogenic CO2 emissions. This occurred
because the main source of non-human and non-animal power at the
time came from steam engines fired by coal, following improvements
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Average real GDP per capita across regions
The measures are adjusted for inflation (at 2011 prices) and also for price differences between regions
(multiple benchmarks allow for cross-regional income comparisons).
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Figure 5.1: Increases in average real GDP per capita across major regions from
1870.
Source: https://ourworldindata.org/.

to the earlier engine of Thomas Newcomen by the separate condenser
invented by James Watt, as well as his enhancing its versatility to gen-
erate rotary power. Moreover, at the time, coal was relatively available
in the UK, and quite cheap to mine, so although transporting such a
heavy substance by land was expensive, sea routes were widely used,
and from the opening of the Bridgewater Canal in 1771 greatly reducing
costs, a boom in canal building occurred.1

However, the transport situation was even more radically altered
at the ‘Rainhill trials’ in 1829 won by George and Robert Stephensons’
locomotive Rocket demonstrating the speed and power of steam-driven
trains, a development that soon went global.2 With improvements in

1An invaluable spin off of this boom was the wonderful 1819 geological map by
William Smith of the rock strata of the UK: see e.g., Winchester (2001).

2See e.g., Fullerton et al. (2002). As argued in Hendry (2011), prizes for methods
to reduce, store or extract CO2 from the atmosphere deserve serious consideration.

https://ourworldindata.org/
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steam engines, rail transport came to dominate for more than a century
and of course produced volumes of CO2 in the process.

Oil consumption added considerably to CO2 emissions from the
late 19th century with the invention of gasoline and diesel powered
internal combustion engines for cars, and replacing coal in ships as
the heat source for steam engines. In the 20th century, air travel has
further increased the demand for oil products, as have various chemical
industries.

Nevertheless, the victory of coal and later oil was not guaranteed.
Although electricity was known from ancient times as a shock that
electric fish could deliver, and from ‘static electricity’ created by rubbing
objects, the first understanding (and the English name) only came after
Gilbert (1600). Following many discoveries through its links to lightning
by Benjamin Franklin, creating batteries by Alessandro Volta, and
Hans Oersted’s finding that an electric current produces a magnetic
field, the key breakthrough was Michael Faraday’s electric motor in
the early 1830s, linking electricity with a moving magnet that allowed
electricity to be generated as needed (see Blundell, 2012, for an excellent
introduction). The first electricity generator in the UK in 1868 was
hydro driven, but from 1882 till recently, coal-fired steam-driven power
stations produced most of the UK’s electricity—adding to the already
large use of coal in household fires, industry and rail transport.

Not only was hydro-electric power available in the 1860s, the first
commercial photovoltaic solar panel was developed by Charles Fritts in
1881, building on the creation by Edmond Becquerel in 1839 of the first
photovoltaic cell, a device that converted the energy of light directly
to electricity. However, it took till the mid 1950s for really viable solar
cells to be created by Bell Labs. Moreover, wind power has been used
sporadically for more than 2000 years, growing in use in Iran from the
7th century with windmills, that idea reaching Europe about 400 years
later and leading to their widespread use to generate power to grind
grain and pump water. The first wind turbine to generate electricity
was built by James Blyth in 1887, and by the 1930s wind-generated
electricity was relatively common on US farms.

Finally, electric cars also date back before the 1880s but became a
serious mode of transport when Thomas Parker built a vehicle with a
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high capacity and rechargeable battery. As they were quiet, comfortable,
could travel fast for the time, and did not need gears, they were popular
in the early 20th century, when internal combustion engines displaced
them given their much greater travel range and lower cost after Henry
Ford’s mass produced vehicles, again adding to greenhouse gas emissions
(and many more noxious substances including tiny particulates, nitrogen
oxides and carbon monoxide).

Thus, not only are there long historical precedents for renewable
energy generation and electric vehicles, they were first available in
the second half of the 19th century: had these developments come
a century earlier and seen the concomitant efficiency improvements
achieved recently, coal-fired electric power and petrol cars need not have
happened, an issue we return to in §7.13.

5.1 Climate Does Not Change Uniformly Across the Planet

Such large increases as 100 ppm in atmospheric CO2 seen in Figure 4.2
have warmed the planet as shown in Figure 4.6.

In addition to the faster Arctic warming,3 Figure 5.2 shows that
temperature changes have varied between regions. As the tropics receive
much more heat from the sun than the poles, that heat is distributed
away from the equatorial regions towards the poles. In his excellent
video, David Battisti explains that tropical cloud cover plays a key
role in that process, and that using the average cloud cover in all the
major climate systems greatly reduces the differences between their
simulations of future climate.4

The Arctic and other northern hemisphere regions have warmed
the most over the period shown, but many parts of the planet have
seen little change, whereas some ocean and Antarctic areas have cooled.
Thus, the key is climate change induced by the rising temperatures
that are fuelled by additional greenhouse gas emissions from human

3See e.g., https://www.msn.com/en-ca/weather/topstories/the-unexpected-
link-between-the-ozone-hole-and-arctic-warming/ar-BB1058WF.

4https://www.oxfordmartin.ox.ac.uk/videos/from-global-to-local-the-
relationship-between-global-climate-and-regional-warming-with-prof-david-
battisti/.

https://www.msn.com/en-ca/weather/topstories/the-unexpected-link-between-the-ozone-hole-and-arctic-warming/ar-BB1058WF
https://www.msn.com/en-ca/weather/topstories/the-unexpected-link-between-the-ozone-hole-and-arctic-warming/ar-BB1058WF
https://www.oxfordmartin.ox.ac.uk/videos/from-global-to-local-the-relationship-between-global-climate-and-regional-warming-with-prof-david-battisti/
https://www.oxfordmartin.ox.ac.uk/videos/from-global-to-local-the-relationship-between-global-climate-and-regional-warming-with-prof-david-battisti/
https://www.oxfordmartin.ox.ac.uk/videos/from-global-to-local-the-relationship-between-global-climate-and-regional-warming-with-prof-david-battisti/
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Figure 5.2: Changes in global temperature 2014–2018.
Source: NASA.

behavior, primarily burning fossil fuels, especially coal and oil, as well
as reduced CO2 take up from deforestation.

To summarize, we showed above that humanity can easily affect
Earth’s oceans and its atmosphere, and is doing so. Given the Earth’s
limited atmosphere, the share of CO2 has risen by more than 30% to over
400 ppm since 1860. Greenhouse gases are transparent to incoming short-
wave radiation from the sun, but reflect back some outgoing long-wave
radiation, warming the atmosphere, land and the oceans which respond
to balance temperatures, also leading to sea-level rises. Over geological
time, climate change has been responsible for the great extinctions, as
life cannot adapt to some losses of habitat. Thus, understanding climate
change is crucial to tackling its likely consequences. The large climate
systems model how the Earth responds to changes in greenhouse gases,
but the emissions thereof are a function of economic, social, technological,
and political behavior. Empirical modeling is an essential addition which
Section 2 described, but as we also discussed, can be prone to important
difficulties. To illustrate how Climate Econometrics tackles these, we
describe in detail econometric modeling of Ice Ages and past climate
variability over the last 800,000 years in the next section, then UK
annual CO2 emissions 1860–2017 in Section 7.



6
Identifying the Causal Role of CO2 in Ice Ages

While many contributions led to the discovery of massive past glacia-
tion on land, that by Agassiz (1840), based on the contemporaneous
movements of glaciers in his native Switzerland and using those to
explain a number of previously puzzling features of the landscape in
Scotland, was a major step forward in understanding the variability of
past climate. Agassiz conceived of a ‘Great Ice Age’, an intense, global
winter lasting ages, rather than multiple Ice Ages as now, but Geikie
(1863) discovered plant fragments between different layers of glacial
deposits, implying that sustained warm periods separated cold glacial
periods in prehistory. The calculations by Croll (1875) using just the
variations in the Earth’s orbit then gave a theoretical mechanism for
how ice ages could occur and a time line, where the changing albedo
of ice coverage helped explain the relative rapidity with which glacial
periods switched, although he predicted that the last Ice Age was older
than observed. Recently, Pistone et al. (2019) have shown that the
complete disappearance of Arctic sea ice would be (in temperature
terms) ‘equivalent to the effect of one trillion tons of CO2 emissions’
(roughly 140 ppm) because an open ocean surface typically absorbs
approximately six times more solar radiation than a high albedo surface
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covered with sea ice. Such an effect reducing ocean ice as the climate
gradually warmed after the peak of glacial extent would accelerate
melting, and conversely for cooling. Croll’s research was later amplified
by Milankovitch (1969) (originally 1941) who calculated solar radia-
tion at different latitudes from changes in obliquity and precession of
the Earth as well as eccentricity. Milankovitch also corrected Croll’s
assumption that minimum winter temperatures mattered, to show that
cooler summer maxima were more important in leading to glaciation.

Even a century after Agassiz, there was limited evidence to sup-
port such ideas and the timings of glacial episodes. However, these
general explanations have since been corroborated by many empirical
observations of past oceanic and atmospheric climate changes: see e.g.,
Imbrie (1992). As we show below, an important reason for analyzing
what may seem like the distant past is its relevance today. The climate
then was little affected by the activities of the various human species
on the planet, partly as they were too sparse and partly did not have
the technology. Consequently, any links between, say, CO2 and tem-
perature above the forces from the orbital drivers (which of course are
still operating) must have been natural ones, so can help us understand
their present interactions when CO2 emissions are anthropogenic.

There are three main interacting orbital changes over time affecting
incoming solar radiation (insolation) that could drive Ice Ages and
inter-glacial periods. These are: (a) 100,000 year periodicity deriving
from the non-circularity of the Earth’s orbit round the Sun from the
gravitational influences of other planets in the solar system where zero
denotes circularity (eccentricity: Ec below); (b) a 41,000 year periodicity
coming from changes in the tilt of the Earth’s rotational axis relative
to the ecliptic measured in degrees (obliquity: Ob); (c) about 23,000
and 19,000 year periodicities due to the precession of the equinox, also
measured in degrees, which changes the season at which the Earth’s
orbit is nearest to the Sun, resulting in part from the Earth not being
an exact sphere (Pr). These three are shown measured at 1000-year
intervals in Figures 6.1(a), (b) and (c), together with summer-time
insolation at 65◦ south (St) in Panel (d) (see Paillard et al., 1996). The
X-axes in such graphs are labeled by the time before the present in 1000-
year intervals, starting 800,000 years ago. Ec and St show two major
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Figure 6.1: Ice-age orbital drivers: (a) Eccentricity (Ec); (b) obliquity (Ob); (c) pre-
cession (Pr); (d) Summer-time insolation at 65◦ south (St).

long-swings pre and post about −325 and within each, a number of
shorter ‘cycles’ of varying amplitudes, levels and durations. Ob appears
to have increased in amplitude since the start of the sample, whereas it
is difficult to discern changes in the patterns of Pr. The orbital series
are strongly exogenous, and most seem non-stationary from shifting
distributions, not unit roots.

Orbital variations are not the only forces that affect glaciation.
The Earth’s energy balance is determined by incoming and outgoing
radiation: for a cointegrated econometric model thereof, see Pretis (2019).
The role of St is to summarize changes in the former, but an exogenous
summary measure of outgoing radiation is not clear, as changes that
also affect climate include:

(i) variations in the Sun’s radiation output (radiative forcing);

(ii) atmospheric water vapor and greenhouse gases (e.g., CO2, N2O,
CH4);
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(iii) volcanic eruption particulates in the atmosphere;

(iv) albedo from alterations in ice cover, including from volcanic dust;

(v) iron in wind-blown dust enabling Southern Ocean storage of CO2;1

(vi) ocean temperatures (which lag behind land);

(vii) sea levels and induced ocean circulation patterns;

(viii) cloud cover and its distribution in location and season;

(ix) changes in the magnetic poles.

Of these, (i), (iii) and (ix) seem strongly exogenous, as do volcanic
contributions to (iv), whereas (ii), the rest of (iv) and (v)–(viii) must
be endogenously determined within the global climate system by the
strongly exogenous drivers. However, anthropogenic greenhouse gas
emissions are now ‘exogenously’ changing atmospheric composition: see
Richard (1980) for an analysis of modeling changes in a variable’s status
as endogenous or exogenous, which here would just affect the last few
(1000 year) observations.

That the distance from the Sun matters seems rather natural, as
such variations change radiative forcing and hence global temperatures.
However, the variations due purely to the eccentricity of the orbit are
small. Obliquity also must matter: if the Northern Hemisphere directly
faced the Sun, ice would usually be absent there; and if it never faced the
Sun, would generally be frozen. Precession seems the smallest driving
force of these, but interactions may be important: when the Earth
is furthest from the Sun and tilts away in the Northern Hemisphere
summer, that may cool faster: see Paillard (2010) for an excellent
discussion of these interactions. Even so, a problem with the theory
that ‘purely orbital’ variations drove ice ages over the last 800,000 years
is that the known orbital variations should not result in sufficiently
large changes in radiative forcing on the Earth to cause the rapid
arrival and especially the rapid ending, of glacial periods: see Paillard
(2001). Although St could provide some additional explanation, and

1See Buchanan et al. (2019).
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in particular seems to help capture changes at peaks and troughs, we
decided to only use the strongly exogenous orbital drivers. An equation
regressing St just on these and its first lag produced R2 = 0.988, so we
leave to the reader the exercise of building a model with St included in
the list of variables.2

There are several possible reasons for ‘rapid’ changes in the climate
system, remembering that the observation frequency is 1000 years. The
extent of Southern Ocean sea ice can substantively alter ocean ventila-
tion by reducing the atmospheric exposure time of surface waters and
by decreasing the vertical mixing of deep ocean waters, which Stein
et al. (2020) show can lead to 40 ppm changes in atmospheric CO2. An-
other explanation is the presence of non-linear feedbacks or interactions
between the drivers. Thus, Figure 6.2 shows their interactions in Panels
(a) [Ec×Ob], (b) [Ec× Pr], (c) [Ob× Pr], (d) [Ec× St], (e) [Pr× St]
and (f) [Ob× St] although the model developed here includes only the
first three interactions together with the squares to capture non-linear
influences. Explaining glaciation over the Ice Ages has garnered a huge
literature, only a small fraction of which is cited here. The possibility
of the Northern Hemisphere facing another Ice Age was still considered
in the 1950s as the following quote illustrates:

We do not yet know whether the latest turn in our climatic
fortunes, since the optimum years of the 1930s, marks the
beginning of a serious downward trend or whether it is
merely another wobble. . .

Lamb (1959)

but by 1982, Lamb (1995) emphasized global warming as the more
serious threat to climate stability.

The remainder of the section is as follows. §6.1 describes the data
series over the past 800,000 years, then §6.2 models ice volume, CO2 and
temperature as jointly endogenous in a 3-variable system as a function
of variations in the Earth’s orbit. The general model is formulated in

2For more comprehensive systems that endogenously model measures for all the
variables in (iii)–(vii), see Kaufmann and Juselius (2013) and Pretis and Kaufmann
(2018). We are also grateful to those authors for providing the data series analyzed
here.
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Figure 6.2: Ice-age orbital driver interactions: (a) EcOb; (b) EcPr; (c) ObPr;
(d) EcSt; (e) PrSt; (f) ObSt.

§6.2.1, and the simultaneous system estimates are discussed in §6.2.2.
Their long-run implications are described in §6.3 with one hundred
1000-year 1-step and dynamic forecasts in §6.3.1. Then, §6.3.2 considers
when humanity might have begun to influence climate, and discusses the
potential exogeneity of CO2 to identify its role during Ice Ages. §6.4 looks
100,000 years into the future using the calculable eccentricity, obliquity
and precession of Earth’s orbital path, to explore the implications for
the planet’s temperature of atmospheric CO2 being determined by
humans at levels far above those experienced during Ice Ages. Finally,
§6.5 summarizes the conclusions on Ice-Age modeling.

6.1 Data Series Over the Past 800,000 Years

A vast international effort over many decades has been devoted to
measuring the behavior of a number of variables over the Ice Ages.
Naturally, proxies or indirect but closely associated observables that
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remain in the ground, ice, oceans and ocean floors are used based on
well-established physical and chemical knowledge. Econometricians are
essentially mere end users of this impressive research base.

Antarctic-based land surface temperature proxies (denoted Temp
below) were taken from Jouzel et al. (2007). The paleo record from
deep ice cores show that atmospheric CO2 varied between 170 ppm
and 300 ppm over the Ice Ages, where 1 ppm = 7.8 gigatonnes of CO2
(see Lüthil et al., 2008). Ice volume estimates (denoted Ice below) were
from Lisiecki and Raymo (2005) (based on δ18O as a proxy measure).
To capture orbital variations, Ec, Ob and Pr and their interactions are
conditioned on. All observations had been adjusted to the common
EDC3 time scale and linearly interpolated for missing observations
to bring all observations on a 1000 year time interval (EDC3 denotes
the European Project for Ice Coring in Antarctica–EPICA–Dome C,
where drilling in East Antarctica has been completed to a depth of
3260 meters, just a few meters above bedrock (see Parrenin et al.,
2007). Synchronization between the EPICA Dome C and Vostok ice
core measures over the period −145,000 to the present was based on
matching residues from volcanic eruptions (see Parrenin et al., 2012).
The total sample size in 1000 year intervals is T = 801 with the last 100
observations (i.e., 100,000 years, ending 1000 years before the present)
used to evaluate the predictive ability of the estimated system. Figure 6.3
records a shorter sample of sea level data.3

We focus on modeling Ice, CO2 and Temp as jointly endogenous
functions of the orbital variables which we take to be strongly exogenous,
so feedbacks onto their values from Earth’s climate are negligible. The
patterns of these time series are remarkably similar, all rising (or
falling) at roughly the same times. Figure 6.4 emphasizes how close
these movements are by plotting pairs of time series: (a) CO2 and the
negative of ice volume (denoted IceNeg); (b) CO2 and Temp; (c) Temp
and IceNeg; (d) IceNeg and sea level (only for the last 465,000 years).

3Sea surface temperature data are available from Martinez-Garcia et al. (2009)
which could help explain oceanic CO2 uptake and interactions with land surface
temperature. Sea level data, based on sediments, can be obtained from Siddall et al.
(2003), over a shorter sample, but are not analyzed here.
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Figure 6.3: Ice-age time series: (a) Ice volume (Ice); (b) atmospheric CO2 in parts
per million (CO2); (c) temperature (Temp); (d) shorter-sample sea level changes in
meters.

Atmospheric CO2 levels closely track the negative of ice volume, the
temperature record and sea level, as do other pairs.

If ice ages are due to orbital variations, why should atmospheric
CO2 levels also correlate so closely with ice volume? Lea (2004) relates
changes in tropical sea surface temperature to atmospheric CO2 levels
over the last 360,000 years to suggest that CO2 was the main determi-
nant of tropical climate. Conversely, in https://climateaudit.org/2005/
12/18/gcms-and-ice-ages/, Stephen McIntyre argues that CO2 should
not be treated as a forcing variable in statistical models of ice-age cli-
mate, as it is an endogenous response. So is the mechanism not orbital
variations, but instead that changes in atmospheric CO2 levels alter
global temperatures which in turn drive changes in ice volume? The
answer lies in the deep oceans, in particular, the Southern Ocean, which
acts as a carbon sink during cold periods, and releases some of that
CO2 as the planet warms, in turn enhancing cooling and warming: see

https://climateaudit.org/2005/12/18/gcms-and-ice-ages/
https://climateaudit.org/2005/12/18/gcms-and-ice-ages/
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Figure 6.4: (a) CO2 and the negative of ice volume (IceNeg); (b) CO2 and tem-
perature; (c) temperature and IceNeg; (d) IceNeg and sea level (only for the last
465,000 years).

e.g., Jaccard et al. (2016). Thus, the exogenous orbital variations drive
temperature, which drives changes in ice volume and in turn CO2 levels.
By modeling the 3-variable simultaneous-equations system estimated
using full information maximum likelihood (FIML: see e.g., Hendry,
1976), treating all three as endogenous, the roles of Temp and CO2 as
endogenous determinants of Ice can be investigated. The approach used
here is described in §2.8.

In addition to the many dozens of climatology-based studies, there
are several econometric analyses of ice-age data, examining issues of
cointegration and the adequacy of using orbital variables as the ex-
ogenous explanatory regressors. Kaufmann and Juselius (2010, 2013)
analyze the late Quaternary ‘Vostok’ period of four ‘glacial cycles’ and
Pretis and Kaufmann (2018) build and simulate a statistical climate
model over the paleo-climate record of the 800,000 years of data inves-
tigated here. We now turn to system modeling of our three variables of
interest.
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6.2 System Equation Modeling of the Ice-Age Data

Our focus is on modeling Ice allowing for the endogeneity of Temp
and CO2, with dynamic feedbacks, non-linear impacts of the orbital
variables and handling outliers. Consequently, the initial GUM is a
VARX(1) for yt = (Ice CO2 Temp)t conditional on the nine orbital
measures and non-linear functions thereof where:

z′t = (Ec Ob Pr EcOb EcPr PrOb Ec2 Ob2 Pr2)t (6.1)

with a one-period lag (i.e., 1000 years earlier) on all variables. The
lagged values are to capture dynamic inertia: when the ice covers a
vast area, that will influence the ice sheet in the next period, even
when periods are 1000 years apart. Moreover, that observation length
is just 1% of the eccentricity periodicity, so the Earth will still be
close to its previous position.4 System IIS at 0.1% was implemented
with all the continuous variables retained, then after locating outliers,
the regressor variables were selected at 1% to create a parsimonious
VARX(1), denoted PVARX(1). Next, that system was transformed to a
simultaneous-equations model of the PVARX(1), where only variables
and outliers that were relevant in each equation were included, and
finally contemporaneous links were investigated. Only retaining variables
that are significant in a PVARX(1) avoids ‘spurious identification’ from
using completely irrelevant variables that are then excluded differently
in each equation to apparently achieve the order condition.

6.2.1 The General Unrestricted Model (GUM)

The GUM in this setting is a dynamic system with strongly exogenous
regressors which can be written as:

yt = γ0 + Γ1yt−1 + Γ2zt + Γ3zt−1 + Ψdt + εt, (6.2)

where dt denotes a vector of impulse indicators selected by system
IIS. The difference from single-equation IIS described above is that
indicators have to be significant at the target nominal significance level
in the system, not just in any one equation therein.

4Residual autocorrelation suggests that a second lag or longer may also matter,
despite such variables being at least 2000 years earlier.
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First, all the yt−1, zt and zt−1 in (6.2) are retained without selection
when IIS is applied at α = 0.001 for T = 697 keeping the last hundred
observations for out-of-sample forecast evaluation. This led to 35 impulse
indicators being selected, the earliest of which was 1{−339}. However,
many of these were retained to avoid a failure of encompassing the first
feasible GUM, and were not significant at α = 0.001.

Table 6.1 records the correlations between the actual observations
and the fitted values taking impulse indicators into account, so each
variable can be explained in large measure by a model of the form
(6.2). Table 6.2 shows the correlations between the residuals of the
three equations, with residual standard deviations on the diagonal.
There remains a high correlation between CO2 and Temp residuals even
conditional on all the orbital variables, but not between those of Ice
and either CO2 or Temp, although those correlations remain negative.

Next, the other regressors were selected at 1% resulting in a
PVARX(1). Again, note that selection decisions are at the level of
the system rather than individual equations. Finally, to avoid the spu-
rious identification issue from indicators that were insignificant in the
system, any that were also insignificant in every equation were manually
deleted from the system, still leaving 32.

Table 6.1: Correlations between actual and fitted values in the VARX(1)

Ice CO2 Temp

0.981 0.981 0.972

Table 6.2: Correlations between VARX(1) residuals, with standard deviations on
the diagonal

Ice CO2 Temp

Ice 0.090 – –
CO2 −0.179 5.13 –
Temp −0.180 0.574 0.711
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6.2.2 The Simultaneous System Estimates

Because many of the exogenous and lagged variables and impulse
indicators were only significant in one equation, we reformulated the
system as a simultaneous-equation model. This treats all three modeled
variables as endogenous and was estimated by FIML. We then manually
eliminated insignificant regressors in each equation in turn. The current
dated values of Temp and CO2 in the Ice equation and of Temp in the
CO2 equation were insignificant, but that of CO2 was significant in the
equation for Temp. This delivered the system model in (6.3)–(6.5):

Îcet = 1.43
(0.34)

+ 0.860
(0.015)

Icet−1 − 0.020
(0.002)

Tempt−1 + 102
(31)

Ect

− 101
(32)

Ect−1 − 0.040
(0.014)

Obt−1 − 5.07
(1.30)

EcObt

+ 5.05
(1.36)

EcObt−1 − 4.97
(1.03)

EcPrt

(6.3)

ĈO2,t = 218
(32)

+ 0.853
(0.018)

CO2,t−1 + 1.34
(0.18)

Tempt−1 + 1400
(342)

Ect

− 3070
(647)

Ect−1 − 13.0
(2.31)

Obt−1 + 70.7
(23)

EcObt−1 + 0.232
(0.047)

Ob2
t

(6.4)

T̂empt = − 2.49
(0.69)

+ 0.879
(0.023)

Tempt−1 + 0.0080
(0.0026)

CO2,t − 301
(37)

Ect

+ 22.6
(2.45)

EcObt − 9.80
(1.94)

EcObt−1 + 25.5
(7.1)

EcPrt.
(6.5)

The correlations between the actual and fitted values for the three
variables in the SEM are virtually identical to those in Table 6.1, con-
sistent with the likelihood-ratio test of the over-identifying restrictions
against the PVARX(1) being χ2

OR(64) = 69.7, which is insignificant at
even the 5% level. Although the inertial dynamics play a key role in
the three equations, all the eigenvalues of the system dynamics are less
than unity in absolute value at (0.97, 0.86, 0.77). The test for excluding
all the non-linear functions yields χ2(8) = 155∗∗, and that for dropping
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all the impulse indicators χ2(44) = 439∗∗, both of which reject at any
viable significance level.5

Figure 6.5 records the actual and fitted values, and residuals scaled
by their standard deviations for the three equations. The tracking is very
close, including over the final 100 ‘out-of-sample’ observations, although
the residuals show the occasional outlier: remember that IIS selection
was at 0.1% to avoid overfitting. Figure 6.6 reports residual densities
with a Normal matched by mean and variance, and correlograms. The
densities are relatively close to the Normal for Ice and Temp after IIS,
but less so for CO2, probably because the restriction to one lag has
left some residual autocorrelation. Most of the formal mis-specification
tests rejected, possibly also reflecting the many omitted influences noted
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Figure 6.5: Actual, fitted and forecast values, with scaled residuals and forecast
errors: (a) and (b) for Ice from (6.3); (c) and (d) for CO2 from (6.4); (e) and (f)
for Temp from (6.5). The vertical bar at T = −100 marks the start of the forecast
period.

5The model recording retained impulse indicators is available on request from
the authors.
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Figure 6.6: Residual densities and correlograms: (a) and (b) for Ice from (6.3);
(c) and (d) for CO2 from (6.4); (e) and (f) for Temp from (6.5).

above, although most of those seem to be endogenous responses as the
climate changed, such as dust from wind storms and sea level changes
both varying with temperature. In the present context, outliers as rep-
resented by impulse indicators could derive from measurement errors in
the variables, super-volcanoes either dramatically lowering temperature
by erupted particulates, or raising by emitting large volumes of CO2,
or like wind-blown dust changing the albedo of ice sheets. Most indica-
tors retained for Ice were negative around −0.2, whereas for CO2 they
were primarily positive and around +15, and for Temp around 2 but
mixed in sign. As outliers are relative to the model being estimated,
those found here could also represent variables omitted from the system
in (6.3)–(6.5).

Table 6.3 records the correlations between the residuals of the
simultaneous equations model, with the residual standard deviations
on the diagonal: these are close to those in Table 6.2.
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Table 6.3: Correlations of the simultaneous model residuals, with standard devia-
tions on the diagonal

Ice CO2 Temp

Ice 0.086 – –
CO2 −0.173 4.88 –
Temp −0.184 0.509 0.667

Considering the equations in more detail, the volume of ice in (6.3)
depends on its previous level and on previous temperatures, as well
as on eccentricity, past obliquity, current and lagged interactions of
eccentricity with obliquity, and with current precession. Although Ec
and EcOb appear to enter primarily as changes, the solved long-run
outcome in Table 6.4 confirms they both also enter significantly as levels.
CO2 has a similar coefficient on its lag, a positive feedback from past
temperature, current and past levels of eccentricity, past obliquity and
their interaction, and squared obliquity. Temp responds to its previous
value and positively to current CO2: its coefficient in (6.5) entails that
a 100 ppm increase (as seen since 1958) would raise temperatures by
0.8 ◦C ceteris paribus. Neither current CO2 nor Temp are significant in
the equation for Ice; and current Temp is insignificant if added to that
for CO2.

Table 6.4: Long-run solutions as a function of the relevant strongly exogenous
orbital variables where CO2 has been divided by 100 and Temp by 10 to align
numerical coefficient values

1 Ec Ob EcOb EcPr ObSq

Ice −17.3 1162 1.80 −49.3 −111 −0.037
SE (16.3) (402) (1.2) (17) (31) (0.020)

CO2 32.0 −837 −2.19 35.6 47.2 0.039
SE (11.9) (276) (0.87) (11.7) (19.1) (0.016)

Temp 19.0 −798 −1.44 34.0 52.0 0.026
SE (10.8) (257) (0.80) (10.9) (19.5) (0.014)
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6.3 Long-Run Implications

Table 6.4 solves out the dynamics and lags to express each endogenous
variable as a function of the relevant orbital variables. The original
coefficients are not easy to interpret as they depend on the units of
measurement of the orbital variables, so CO2 has been divided by 100
and Temp by 10 to align numerical coefficient values. Figure 6.7 graphs
the computed time series of Ice, CO2 and Temp from the long-run
relationships in Table 6.4. These graphs include the last 100,000 years
before the present which are outside the estimation sample.

Despite the different coefficients in the three long-run equations,
the resulting time series in Figure 6.7 are relatively similar, and the
correlations between them all exceed |0.977|. These graphs are just
recombinations of the orbital drivers weighted by the coefficients in
Table 6.4, so reflect the relatively volatile and quiescent periods seen
in Figure 6.1. The increase in volatility from about 250,000 years ago
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Figure 6.7: Computed time series of Ice, CO2 and Temp from the relationships in
Table 6.4.
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is marked, though the inertial dynamics from the lagged dependent
variables smooths that over time as seen in Figure 6.5.

6.3.1 1-Step and Long-Run Forecasts

Figure 6.8 records the hundred 1-step ahead forecasts with ±2SE error
bands based on coefficient estimation variances as well as the resid-
ual variances. The second column shows the resulting forecast errors
(unscaled).

Table 6.5 reports their RMSFEs which are close to the in-sample
standard deviations shown in the following row as σ̂s (IIS) from Table 6.3
for comparison, or no IIS. The model for Ice provides a better description
of the last 100 observations than the earlier sample, even though the in-
sample residual standard deviations were calculated after outliers were
removed by IIS. The forecast intervals in Figure 6.8 could be adjusted
for the likely presence of outliers in the future at roughly their rate of
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Figure 6.8: A hundred 1-step ahead forecasts at 1000-year measures with forecast
intervals at ±2SE shown by error bands: (a) for Ice from (6.3); (c) for CO2 from
(6.4); (e) for Temp from (6.5). (b), (d) and (f) report the associated forecast errors.
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Table 6.5: 1-step ahead root mean square forecast errors; in-sample model residual
standard deviations after IIS; and model residual standard deviations without IIS

Ice CO2 Temp

RMSFE 0.084 5.35 0.958
σ̂s (IIS) 0.086 4.88 0.667
σ̃s (no IIS) 0.091 5.38 0.748

occurrence in the past by calculating the in-sample residual standard
deviations excluding impulse indicators, as those after IIS understate
the future uncertainty to some extent. The last row in Table 6.5 reports
those ‘no-IIS’ σ̃ values.

The removal of outliers has not greatly improved the in-sample
fit, and omitting impulse indicators would only increase the reported
forecast intervals by about 10%. The table confirms that surprisingly,
Ice provides a better description forecasting over the last 100 periods
than in-sample with IIS, whereas CO2 and Temp forecasts are worse.
Also, the RMSFE for Ice is smaller than the in-sample fitted σ̃ without
IIS, that for CO2 is similar, whereas again Temp forecasts are worse.
Looking back at Figure 6.5, the forecast errors for Ice seem less variable
than the in-sample residuals on ‘ocular’ econometrics, less so those for
CO2, whereas those for Temp look somewhat more volatile.

Figure 6.9 shows the 100 multi-period ahead forecasts with ±2.2SE
error bands to reflect the absence of indicators. These error bands
assume that the coefficients in the model remain constant, and that
no new forces intervene. With the Industrial Revolution, an additional
driver of CO2 was human fossil fuel emissions, and hence of temperature,
so extending forecasts to that era by an unchanged model is likely to
reveal failure. The first 60 periods are tracked quite well, but miss the
changes around 20,000 years ago and all three sets of forecasts either
cross or are close to an error band by the end. Compared to earlier
changes seen in Figure 6.5, the profiles of Ice and CO2 are similar over
the last two cyclical periods, although the last cycle persisted for longer.
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Figure 6.9: A hundred dynamic forecasts with ±2.2SE error bands: (a) for Ice from
(6.3); (b) for CO2 from (6.4); (c) for Temp from (6.5).

6.3.2 When Did Humanity First Influence the Climate?

Ruddiman (2005) suggested that humanity began to influence the
climate around the time of domesticating animals and starting farming,
so we ‘zoom in’ on the last 10,000 years, and re-estimate the system
up to −10. The estimates are not much changed with χ2

OR(64) = 67.0,
although the contemporaneous coefficient of CO2 on Temp has increased
to unity. Figure 6.10 records the multi-step forecasts over −10 to −1
for Ice, CO2 and Temp. All the forecasts lie within their ±2SE error
bands, but they, and the fitted values for most of the previous 10,000
years, are systematically over for Ice and under for CO2 and Temp. This
matches the dynamic forecasts in Figure 6.9, and could reflect model mis-
specification, or the slowly growing divergence that might derive from
the increasing influence of humanity envisaged by Ruddiman (2005).
Using the presence of proto-weeds that needed ground disturbance to
grow in new areas, Snir et al. (2015) provide evidence of the origins of
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Figure 6.10: Multi-step forecasts over −10 to −1 of: (a) Ice; (b) CO2; (c) Temp.

cultivation long before Neolithic farming, dating such events to around
23,000 years ago.

Having estimated the system up to 10,000 years ago, we changed the
status of CO2 to unmodeled and re-estimated the two-equation model
for Ice and Temp conditional on CO2. Neither fit was much improved,
with σ̂Ice = 0.085 and σ̂Temp = 0.688, but now contemporaneous CO2
is highly significant in the equation for Ice, with t = −3.37∗∗, and its
coefficient in the equation for Temp has more than doubled to 0.024,
which seems implausibly large with t = 10.4∗∗. Also, χ2

OR(43) = 198∗∗
strongly rejects. Thus, the evidence here favors CO2 over the Ice Ages
being an endogenous response to the orbital drivers jointly with Ice and
Temp.

6.4 Looking Ahead

The eccentricity of Earth’s orbital path is calculable far into the future,
as are its obliquity and precession, so we extended the data set for
100,000 years into the future: Figure 6.11 records these, where the dark



254 Identifying the Causal Role of CO2 in Ice Ages

Eccentricity

-800 -650 -500 -350 -200 -50 100

0.01

0.02

0.03

0.04

0.05
(a)

Eccentricity Obliquity

-800 -650 -500 -350 -200 -50 100

23

24

(b)
Obliquity

Precession

-800 -650 -500 -350 -200 -50 100

0.1

0.2

0.3

(c)
Precession Summer time insolation 

-800 -650 -500 -350 -200 -50 100

450

500

550
(d)

Summer time insolation 

Figure 6.11: (a) Eccentricity; (b) Obliquity; (c) Precession; (d) Summer-time
insolation at 65◦ south, all over −800 to +100.

vertical lines denote the present (see https://biocycle.atmos.colostate.
edu/shiny/Milankovitch). The recent and future eccentricity is relatively
quiescent compared to past values.

Extending the data allows us both to forecast over that horizon and
to simulate the potential comparative climate should anthropogenically
determined atmospheric CO2 levels settle at (say) 400 ppm.6 First,
§6.3.2 suggested that humanity had been affecting climate since 10,000
years ago, so we commence the multistep forecasts from that date.
Consequently, the first 10 forecasts are almost the same as those in
Figure 6.10 but are based on a system that does not include any impulse
indicators. Figure 6.12 shows these forecasts over −10 to 100. The figure
records the plot of the earlier time series back to 400 kya (thousand
years ago) to emphasize the comparison with the future period.

6We are grateful to Bingchen Wang for his excellent research assistance in data
collection and curation. Any sequence of CO2 values could be investigated: 400 ppm
is used as close to current levels.

https://biocycle.atmos.colostate.edu/shiny/Milankovitch
https://biocycle.atmos.colostate.edu/shiny/Milankovitch
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Figure 6.12: 110 dynamic forecasts with ±2SE error bands: (a) for Ice from (6.3);
(b) for CO2 from (6.4); (c) for Temp from (6.5).

Given the relatively quiescent orbitals, these distant forecasts suggest
a path well within the range of past data. Matching Pretis and Kaufmann
(2020), we also find the next glacial maximum occurs in about 20,000
years. However, we know that the current value of CO2—i.e., at time
0 on the graphs—is already greater than 400 ppm, which is a value
dramatically outside the ice-age range, so the location shift in CO2 values
has caused forecast failure in a model that treats CO2 as remaining
endogenously determined by natural factors.

Handling the impacts on Ice and Temp of a permanent jump from
the highest Ice-Age value of CO2 of around 300 ppm to 400 ppm or
higher in recent times requires care. Arrhenius (1896) showed that the
‘greenhouse’ temperature response was proportional to the logarithm
of CO2. Our model is linear in CO2, which does not matter over the
ice-age period where log(CO2) and CO2 are correlated 0.99, but does
later.

Panel (a) in Figure 6.13 plots log(CO2) and CO2, matched to have
the same means and ranges, showing the very close match across all
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Figure 6.13: (a) and (b) CO2 and log(CO2) matched by means and ranges for
scenarios of 400 ppm and 560 ppm respectively; 110 dynamic forecasts conditional
on CO2 = 385 ppm and 440 ppm with ±2SE error bands (c) for Ice; (d) for Temp.

time periods once the future value representing 400 ppm is set at
CO2 = 385 ppm against log(400); Panel (b) shows the equivalent match
for CO2 = 440 ppm against log(560), which is a doubling in CO2 since
the last in-sample observation. Thus, to establish the temperature and
ice responses in the system, we set CO2 to 385 ppm and 440 ppm to
mimic the climatic effects of the anthropogenically exogenous values
of 400 ppm and 560 ppm given the log-linear relation. Of course, the
usual orbital drivers still operate, so will continue to influence all three
variables in addition to human outputs, but that is switched off for CO2
so the constant values are the net outcome.

To validly exogenize CO2, as the long-run relations between the
variables and the orbital drivers should be unaffected by humanity’s
intervention in CO2 production, we fix the values of the parameters as
those in Equations (6.3) and (6.5), then assign an exogenous status to
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CO2. However, as the forecast period starts 90,000 years later than the
estimated model, re-selection by IIS would be needed to include that
sample followed by re-estimation. For comparability with the trajectories
in Figure 6.12, we omitted all impulse indicators, which should have a
negligible effect on these dynamic forecasts. The outcomes are shown
in Figure 6.13 Panels (c) for Ice and (d) for Temp.

Even at 400 ppm, ice volume in Panel (c) falls well below any
previous values to a minimum around 75,000 years in the future, then
increases somewhat from the increased eccentricity. The upper bound
of the estimated uncertainty then lies below the lowest ice-age values.
Increasing CO2 to mimic a doubling simply magnifies such effects,
leading to an almost ice-free Antarctic. Panel (d) for Temp has a line at
the peak ice-age temperature, showing that future values will be greater
than that for 400 ppm, at a maximum of almost 3 ◦C more. Because
the observation frequency is 1000 years, and the dynamic reactions
occur with those lags given the slowly evolving orbitals, the impacts
of the jump in CO2 take a long time to work through. Nevertheless,
for almost 100,000 years, the Antarctic temperature would be above
zero (shown by the thin dashed line). Increasing CO2 to 560 ppm raises
temperatures dramatically, rising to 13 ◦C above the ice-age peak.

Table 6.6 records the resulting long-run relationships between Ice
and Temp and their determinants: substituting the estimated equation
for CO2 from (6.4) and taking account of the scaling there would
essentially deliver Table 6.4. As the model’s parameters are fixed, there
are no standard errors.7 Using the solved long-run coefficient for CO2 on

Table 6.6: Long-run solutions as a function of the relevant strongly exogenous
orbital variables and CO2

1 Ec Ob EcOb EcPr CO2

Ice 13.2 365 −0.29 −15.5 −66 −0.0095
Temp −20.5 −2476 0 106 210 0.066

7If just the coefficient of CO2 is left free in this bivariate model with exogenous
CO2, all others fixed, its long run value is estimated as 0.065 with a standard error
of 0.001.
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Temp of 0.066, the simulated increase of 105 ppm from 280 ppm would
eventually raise temperatures by about 6.9 ◦C ceteris paribus, close to
the forecast peak in the Panel (d). For the doubling of CO2, equivalent
to adding 160 ppm allowing for the log-transform as seen in Panel (b),
the increase would be about 13.2 ◦C, somewhat lower than the peak
simulated value of 17.8 ◦C. Kaufmann and Juselius (2013) note that: ‘a
permanent 180 ppm increase in atmospheric CO2 increases the long-run
Antarctic temperature by about 11.1 ◦C, which corresponds to a global
value of about 5.6 ◦C [Masson-Delmotte et al., 2006, 2010]’, although
Masson-Delmotte et al. (2010) also question the 2-to-1 relation with
global temperatures. However, our estimates of the effects of adding
120 ppm are 7 ◦C Antarctic warming and for adding 280 ppm of between
13.2 ◦C and 17.8 ◦C which straddle their estimate. Knutti et al. (2017)
record a wide range of estimates of equilibrium climate sensitivity (ECS)
with many larger than six.

There are many caveats, from assuming the parameters of the models
stay constant as anthropogenic warming increases despite the many
implicit dynamic relationships between atmosphere and oceans, and how
ice loss would impact those. Nevertheless, the simulated temperature
responses to exogenous changes in atmospheric CO2 are similar to
but smaller than those that actually occurred during the ice ages: for
example, 10 ◦C between 252 kya and 242 kya from an 80 ppm increase
in CO2, or 13 ◦C between 156 kya and 128 kya from a 90 ppm increase
in CO2, remembering that much of these temperature changes were
driven directly by the orbitals.

6.5 Conclusions on Ice-Age Modeling

The 3-equation model over the Ice Ages of ice volume, atmospheric
CO2 and Antarctic Temperature illustrates the approach to modeling
a system. While much simpler than the larger cointegrated systems in
Kaufmann and Juselius (2013) and Pretis and Kaufmann (2018), the
resulting estimated system provided a useful description of the available
time series and strongly supported the view that the role of CO2 was
an endogenous response to the orbital drivers during the Ice Ages. The
evidence also supported an impact of humanity on the Earth’s climate
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starting at least 10,000 years ago. Extending the orbital data for 100,000
years ahead allowed multi-step forecasts with the system continuing as
before so CO2 was endogenously determined, as well as switching its
status to exogenously determined by anthropogenic emissions, although
the orbital drivers would still be operating. The resulting inferred global
temperature rises would be dangerous at more than 5 ◦C, with Antarctic
temperatures positive for thousands of years. Thus, the aims of the
Paris Accord remain crucial, so the next section considers the UK’s role
in reducing its CO2 emissions.



7
Econometric Modeling of UK

Annual CO2 Emissions, 1860–2017

As described in Section 4, CO2 and other greenhouse gas emissions
influence the Earth’s climate. Over the Ice Ages, such emissions were
determined by natural forces as highlighted by Figure 6.4, but the
model developed in Section 6 suggested that CO2 then was primarily
an intermediate determinant rather than an exogenous cause of climate
variations. However, since the Industrial Revolution discussed in Sec-
tion 5, although the same natural forces still operate, greenhouse gas
emissions are now mainly by-products of energy production, manufac-
turing, and transport (all about a quarter of the UK’s emissions), with
agriculture, construction and waste making most of the rest.

As first into the Industrial Revolution, the UK initially produced a
large share of global anthropogenic CO2 emissions, albeit much of that
was embodied in its exports of cloth production, steam engines, ships
and iron products etc. Not only has its share of world CO2 emissions
shrunk to a tiny proportion following global industrialization, there has
been a dramatic drop in its domestic emissions of CO2, so that by 2017
they were back to 1890’s levels: the country first into the Industrial
Revolution is one of the first out. Indeed, on April 22, 2017, ‘Britain
has gone a full day without turning on its coal-fired power stations for
the first time in more than 130 years’,1 and on May 26, 2017 generated

1See https://www.ft.com/content/8f65f54a-26a7-11e7-8691-d5f7e0cd0a16.
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almost 25% of its electrical energy from solar,2 and now goes weeks
without burning coal for electric energy production.

The data analyzed here are aggregate, but as the UK population has
more than doubled since 1860, in 2013 the UK’s CO2 emissions in per
capita terms actually dropped below the level of 1860 (see Figure 7.1(c)),
and are now just 55% of their level in 1894, despite per capita real
incomes being around 7-fold higher. Thus, although the UK now ‘im-
ports’ substantial embodied CO2—reversing the Industrial Revolution
direction—major domestic emissions reductions have occurred but have
obviously not involved substantive sacrifice: see Brinkley (2014) for
an empirical analysis of decoupling growth and CO2 emissions. Much
remains to reduce CO2 emissions towards the net zero level that will
be required to stabilize temperatures, an issue we address in §7.12.
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Figure 7.1: (a) UK CO2 emissions in millions of tonnes (Mt); (b) UK fuel sources:
coal (Mt), oil (Mt), natural gas (millions of tonnes of oil equivalent, Mtoe) and
wind+solar (Mtoe); (c) CO2 emissions per capita, in tons per annum; (d) ratio of
CO2 emissions to the capital stock on a log scale, all series to 2017.

2See https://www.ft.com/content/c22669de-4203-11e7-9d56-25f963e998b2.

https://www.ft.com/content/c22669de-4203-11e7-9d56-25f963e998b2
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The aim of this section is to model the UK’s CO2 emissions to estab-
lish the determinants of the UK’s remarkable drop accomplished with
rising real incomes. We again use Autometrics to jointly select relevant
variables, their lags, possible non-linearities, outliers and location shifts
in putative relationships, and also rigorously test selected equations for
being well-specified representations of the data.

The structure of this section is as follows. §7.1 defines the variables
and records their sources, then §7.2 describes the UK time-series data un-
der analysis, initially using only data over 1861–2011 for estimation and
selection to allow an end-of-sample parameter-constancy test to 2017,
updating estimation to 2013 in §7.7. §7.3 formulates the econometric
model, where §7.3.1 considers the choice of functional forms of the re-
gressors. Then §7.4 evaluates a simple model formulation, and highlights
the inadequacy of such specifications facing wide-sense non-stationary
data. The four stages of model selection from an initial general model
are described in §7.5, then §7.6 addresses selecting indicators in the
general model. §7.7 describes selecting relevant regressors given the
retained indicators, and implementing a cointegration reduction, where
the non-integrated formulation is estimated in §7.8. §7.9 conducts an
encompassing test of the linear-semilog model versus a linear-linear one.
§7.10 presents conditional 1-step ‘forecasts’ and multi-step forecasts
from a VAR, §7.11 addresses the policy implications of the empirical
analysis, then §7.12 considers whether the UK can reach its 2008 Cli-
mate Change Act (CCA) CO2 emissions targets for 2050, and the more
recent aim of net zero greenhouse gas (GHG) emissions. Finally, §7.13
estimates a ‘climate-environmental Kuznets curve’.

7.1 Data Definitions and Sources

The variables used in the analysis of UK CO2 emissions are defined as
follows:

Et = CO2 emissions in millions of tonnes (Mt) [1], [2].
Ot = Net oil usage, millions of tonnes [3].
Ct = Coal volumes in millions of tonnes [4].
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Gt = real GDP, £10 billions, 1985 prices [5], [7], p.836, [8]a,b.
Kt = total capital stock, £billions, 1985 prices [6], [7], p.864, [8]b,c.
∆xt = (xt − xt−1) for any variable xt
∆2xt = ∆xt −∆xt−1

Sources:
[1] World Resources Institute http://www.wri.org/our-work/project/
cait-climate-data-explorer and https://www.gov.uk/government/
collections/final-uk-greenhouse-gas-emissions-national-statistics;
[2] Office for National Statistics (ONS)
https://www.gov.uk/government/statistics/provisional-uk-green
house-gas-emissions-national-statistics-2015;
[3] Crude oil and petroleum products: production, imports and exports
1890 to 2017 Department for Business, Energy and Industrial Strategy
(Beis);
[4] Beis and Carbon Brief http://www.carbonbrief.org/analysis-uk-cuts-
carbon-record-coal-drop;
[5] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksector
accounts#timeseries;
[6] ONS https://www.ons.gov.uk/economy/nationalaccounts/
uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/
2014-11-14#capital-stocks-and-consumption-of-fixed-capital-in-detail;
[7] Mitchell (1988) and Feinstein (1972);
[8] Charles Bean (from (a) Economic Trends Annual Supplements, (b)
Annual Abstract of Statistics, (c) Department of Employment Gazette,
and (d) National Income and Expenditure).
See Hendry (2001, 2015) and Hendry and Ericsson (1991) for discussions
about Gt and Kt. There are undoubtedly important measurement
errors in all these time series, but Duffy and Hendry (2017) show that
strong trends and large location shifts of the form prevalent in the data
analyzed here help offset potential biases in the long-run relation’s
estimated coefficients.

http://www.wri.org/our-work/project/cait-climate-data-explorer
http://www.wri.org/our-work/project/cait-climate-data-explorer
https://www.gov.uk/government/collections/final-uk-greenhouse-gas-emissions-national-statistics
https://www.gov.uk/government/collections/final-uk-greenhouse-gas-emissions-national-statistics
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2015
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2015
http://www.carbonbrief.org/analysis-uk-cuts-carbon-record-coal-drop
http://www.carbonbrief.org/analysis-uk-cuts-carbon-record-coal-drop
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts#timeseries
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts#timeseries
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/2014-11-14#capital-stocks-and-consumption-of-fixed-capital-in-detail
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/2014-11-14#capital-stocks-and-consumption-of-fixed-capital-in-detail
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/2014-11-14#capital-stocks-and-consumption-of-fixed-capital-in-detail
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7.2 UK CO2 Emissions and Its Determinants

As already noted, energy production, manufacturing, and transport each
account for roughly 25% of UK CO2 emissions, the rest coming mainly
from agriculture, construction and waste in approximately equal shares.
While other greenhouse gas emissions matter, CO2 comprises about
80% of the UK total, with methane, nitrous oxide and hydrochlorofluo-
rocarbons (HCFCs) making up almost all the rest in CO2 equivalents.
However, the various fossil fuels have different CO2 emissions per unit of
energy produced and how efficiently fuels are burnt also matters, from
coal on an open fire or in a furnace, through gasoline-powered vehicles
with different engine efficiencies, to a gas-fired home boiler or a power
station. A standard approach to estimate country fossil fuel emissions is
to use the product of the volumes of fuels produced, the proportion of
each fuel that is oxidized, and each fuels’ carbon content (see Marland
and Rotty, 1984). Table 7.1 records the average CO2 emissions per
million British thermal units (Btu) of energy produced for the main
fossil fuels.3

Table 7.1: Pounds of CO2 emitted per million British thermal units (Btu) of energy
produced

Coal (anthracite) 228.6
Coal (bituminous) 205.7
Coal (lignite) 215.4
Coal (sub-bituminous) 214.3
Diesel fuel & heating oil 161.3
Gasoline 157.2
Propane 139.0
Natural gas 117.0

Source: US Department of Energy & https://www.eia.gov/tools/faqs/faq.php?id=73&t=
11.

3Variations on such data are used in Erickson et al. (2008), Jones and Cox (2005),
Nevison et al. (2008), and Randerson et al. (1997). Data using this methodology
are available at an annual frequency in Marland et al. (2011). CO2 emissions from
cement production are estimated to make up about 5% of global anthropogenic
emissions (see Worrell et al., 2001).

https://www.eia.gov/tools/faqs/faq.php?id=73&t=11
https://www.eia.gov/tools/faqs/faq.php?id=73&t=11
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As rough approximations for interpreting CO2 reductions, coal has
a relative weight of around 2.2, oil 1.6 and natural gas 1.1, depending
on the units of measurements. Thus, switching energy production from
coal to natural gas would reduce emissions by about 45%–50% for the
same amount of energy. Of course, switching to renewable sources would
effect a 100% reduction, and is an essential step to reach a net-zero
emissions target.

The main data over 1860–2017 on UK CO2 emissions, energy vol-
umes, and the relation of CO2 emissions to the capital stock are shown
in Figure 7.1.

Panel (a) shows that UK CO2 emissions rose strongly and quite
steadily from 1860 till about 1916, oscillated relatively violently till
about 1946 from the sharp depression at the end of World War I, the
General Strike, Great Depression starting in 1930, and World War II,
then resumed strong growth till 1970. Following another somewhat
turbulent period till 1984, emissions began to fall slowly, accelerating
after 2005 to the end of our time series in 2017, by which time they
were below levels first reached in 1890. Panel (c) plots CO2 emissions
per capita, revealing that by 2013 they had fallen below the level at the
start of our data period in 1860.

Panel (b) records the time series for coal volumes and net oil us-
age (imports plus domestic production less exports), natural gas and
renewables. Coal volumes behave similarly to CO2 emissions till 1956
at which point they turn down and continue falling from then onwards,
dropping well below the volumes mined in 1860. The sharp dips from
miners’ strikes in 1921, 1926 and 1984 are clearly visible. Conversely, oil
volumes are essentially zero at the start, but rise rapidly in the period
of cheap oil after World War II, peak in 1973 with the first Oil Crisis,
but stabilize from 1981 on, despite a doubling in vehicle travel to more
than 500 billion kilometers p.a. Natural gas usage rises quickly from the
late 1960s, but has recently fallen slightly, and renewables have been
growing rapidly this century.

Finally Panel (d) plots the log-ratio of CO2 emissions to the cap-
ital stock and shows that it started to decline in the 1880s, and has
dropped by more than 92% over the hundred and thirty years since. As
capital embodies the vintage of technology prevalent at the time of its
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construction, tends to be long lasting, and is a key input to production,
the volumes of CO2 produced by production are likely to be strongly
affected by the capital stock: see e.g., Pfeiffer et al. (2016). Hence,
‘stranded assets’ could be a potential problem if legislation imposed
much lower CO2 emissions targets, as looks likely for the UK.

To highlight the massive changes that have occurred in the UK,
Figure 7.2 reports a scatter plot of CO2 emissions against the quantity
of coal, showing the dates of each pair of points, and a 3-dimensional
plot of Et against Kt and Ct. As with Figure 7.1(a), there is strong
growth in emissions as coal output expands until the mid 1950s when
coal production peaks, but emissions continue to grow till the mid 1970s
despite a substantial reduction in coal volumes, and only then start to
decline, falling noticeably after 2008. Referring back to Figure 7.1(b),
the rapid rise in oil use initially offsets the fall in coal, but after the
two Oil Crises of the 1970s, the fall in coal is reflected in the decline in
emissions. Panel (b) shows the major role of the capital stock in changing
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Figure 7.2: (a) Scatter plot of CO2 emissions against the quantity of coal by date;
(b) 3-dimensional plot of Et against Kt and Ct.
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the link between coal and CO2 emissions, reflecting the efficiency gains
seen in Figure 7.1(d). Figure 7.3 shows the distributional shifts in CO2
emissions that have occurred historically, using approximately 40-year
sub-periods.

All the above graphs show non-linear relationships at the bivariate
level (i.e., between CO2 emissions and coal production, say), as well as
shifts in relations. An immediate implication is that simple correlations
between pairs of variables change over time, so will be poor guides to
what matters in a multivariable relationship, as Table 7.2 shows. Coal
volumes have the smallest correlation with CO2 emissions, yet were
manifestly one of its main determinants.4

Figure 7.4 shows recursive estimates of the relation Et = β̂0 + β̂1Ct+
ν̂t, confirming the dramatic non-constancy of that overly simple model,
illustrating the problems of not modeling non-stationarity.

UK CO2 emissions, 1860−1899
UK CO2 emissions, 1900−1939
UK CO2 emissions, 1940−1979
UK CO2 emissions, 1980−2017

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

0.002

0.004

0.006

0.008

0.010

0.012

Mt p.a. →

UK CO2 emissions, 1860−1899
UK CO2 emissions, 1900−1939
UK CO2 emissions, 1940−1979
UK CO2 emissions, 1980−2017

Figure 7.3: Sub-period distributions of UK CO2 emissions.

4Correlations are not well defined for non-stationary variables, as they are not
constant over time.
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Table 7.2: Whole-sample correlations

Correlations: CO2 emissions Coal Oil Real GDP Capital

CO2 emissions 1.000 0.243 0.734 0.528 0.506
Coal 1.000 −0.424 −0.598 −0.624
Oil 1.000 0.829 0.822
Real GDP 1.000 0.997

7.3 Model Formulation

Following the formulation in (2.1) above, the general model is the
system characterizing the LDGP. Here, we are interested in modeling
UK CO2 emissions given the volumes of coal and oil the UK used and
the main representations of the scale of the economy and its productive
capacity, namely GDP and the capital stock. Over most of our sample
period, there would not be any contemporaneous or lagged feedbacks
from CO2 emissions to the explanatory regressors, although by the
middle of the 20th century with ‘Clean Air’ Acts of Parliament, that is
a possibility, increasingly so by the first decade of the 21st century as
climate change concerns grow, but overall a conditional model seems a
viable representation here.

Combining all the above information, neither of the two ‘polar’
approaches to modeling the UK’s CO2 emissions, namely as (a) de-
composed into its sources (coal, oil, gas etc.), or (b) as a function
of economic variables (capital and output) alone, seems likely to be
best. On (a), not all sources have been recorded historically, especially
their carbon compositions, which will have varied over time with the
type of coal used, and how oil was refined to achieve which products
(inter alia). On (b), that changing mix will entail non-constancy in
the relation between emissions and the capital stock and GDP. To
capture the changing mix and its relation to the economic variables,
we included the two main emitters, coal and oil, with the capital stock
and GDP. The latter then explain the emissions not accounted for by
the former: the solved long-run relationship in Equation (7.5) below
finds all four variables play a significant role, and the coefficients for
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Figure 7.4: (a) Recursive β̂1,t with ±2SE
β̂1,t

; (b) Recursive β̂0,t with ±2SE
β̂0,t

;
(c) 1-step recursive residuals ν̂t with ±2σ̂t; (d) Break-point Chow tests scaled by
their 0.1% critical values.

coal and oil are also consistent with that interpretation. In turn, the
additive nature of emissions suggests a linear relation with coal and
oil, although that leaves open how the economic variables might enter,
considered in §7.3.1.

A further obvious feature of Figure 7.1(a) is the number of very
large ‘outliers’ occurring during the inter-war and immediate post-war
periods. Consequently, the general set of variables from which the model
for CO2 emissions will be selected comprises its lagged value and current
and first lagged values of coal and oil volumes, real GDP and the capital
stock. These variables are all retained without selection while selecting
over both impulse and step indicators at α = 0.1% significance. First,
however, we address the functional forms for Gt and Kt.
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7.3.1 Functional Forms of the Regressors

In §2.2.2 we considered a low-dimensional representation of non-linearity,
but here a more specific issue is whether to transform the various
regressors to logarithms or leave as linear. CO2 emissions depend linearly
on the volumes of fossil fuels consumed with the weights shown in
Table 7.1. Moreover, it is the volume of CO2 emitted that has to be
reduced to net zero, so we use that as the dependent variable. In turn, it
is natural to include coal and oil volumes linearly as well. Nevertheless,
both linear and log linear relations were investigated. As oil was used in
negligible quantities in the 19th century, early volumes were increased
by unity (to ensure positive values), but the log transform still seemed
to distort rather than help.

Equivalent linear and log-linear equations were formulated as:

Et = β0 + β1Et−1 + β2Ct + β3Ct−1 + β4Ot + β5Ot−1

+ β6Gt + β7Gt−1 + β8Kt + β9Kt−1 + ut (7.1)

and the same form with all variables in logs, then estimated
with IIS+SIS selecting at 0.001 retaining all the regressors
in (7.1). The log-linear version had a residual standard devi-
ation of 2.6%, whereas dividing the residual standard devia-
tion of the linear form (reported in https://voxeu.org/article/
driving-uks-capita-carbon-dioxide-emissions-below-1860-levels) by the
mean value of Et yielded 2.0%, so the linear representation dominated
on the criterion proposed by Sargan (1964). By way of comparison,
even after IIS, the ‘Kuznets curve’ formulation in (7.7) below had a
residual standard deviation of 5.5%.

However, that leaves open the choice of log or linear just for Gt
and Kt. Figure 7.5 graphs those variables in linear and log transforms,
matched by means and ranges to highlight any relative curvature. Given
the large increase in both since 1860, £100 billion corresponds to very
different percentage changes, illustrated by the apparently small fall
in G after World War I, yet the largest drop in g, with the opposite
after 2008. Consequently, we will model with the logs, denoted g and
k, scaled by 100 so coefficients are between ±10, and ∆g and ∆k are
percentage changes. The encompassing test in §7.9 checks how well the

https://voxeu.org/article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels
https://voxeu.org/article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels
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Figure 7.5: Graphs on a logarithmic scale matched by means and ranges of linear
(capitals) and log (lower case) transforms of (a) GDP; (b) Capital stock.

two possibilities of linear and semi-log compare. Outliers and location
shifts detected by super saturation estimation may well differ between
these specifications.

7.4 Evaluating a Model Without Saturation Estimation

Thus, the baseline relationship between emissions and its main determi-
nants was formulated as:

Et = β0 + β1Et−1 + β2Ct + β3Ct−1 + β4Ot + β5Ot−1

+ β6gt + β7gt−1 + β8kt + β9kt−1 + vt. (7.2)

To demonstrate why a simple-to-general methodology is inadequate, we
will first estimate and evaluate the relation in (7.2) over 1861–2011 with
six observations retained as an end-of-sample constancy test for 2012–
2017, given in (7.3) where estimated coefficient standard errors (SEs) are
shown in parentheses below estimated coefficients with heteroskedastic
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and autocorrelation consistent standard errors (HACSEs) shown below
those in brackets (see Andrews, 1991, and Newey and West, 1987).

Êt = 0.79
(0.054)

[0.070]

Et−1 + 2.58
(0.14)

[0.38]

Ct − 2.21
(0.18)

[0.40]

Ct−1 + 2.05
(0.43)

[0.53]

Ot − 1.53
(0.43)

[0.53]

Ot−1

+ 0.81
(0.53)

[0.49]

gt − 0.99
(0.53)

[0.57]

gt−1 + 1.67
(2.67)

[2.65]

kt − 1.39
(2.62)

[2.57]

kt−1 + 61
(133)

[109]

(7.3)

σ̂ = 16.2 R2 = 0.985 FAR(2, 139) = 8.44∗∗ χ2
nd(2) = 64.4∗∗

FARCH(1, 149) = 18.9∗∗ FHet(18, 132) = 2.95∗∗

FReset(2, 139) = 14.3∗∗ FChow(6, 141) = 0.96 tur = −3.91.

Despite the high R2 induced by the non-stationarities in the variables,
the model is completely inadequate. Every mis-specification test rejects,
the key economic variables g and k are insignificant, and tur does not
reject the null hypothesis of no cointegration. The solved long-run
equation for E in Table 7.3 also has the ‘wrong’ relative coefficients of
coal and oil.

The HACSEs do not alter the significance or insignificance of the
regressors, and given the substantive rejections on FAR and FHet, are
surprisingly close to the conventional SEs (see the critiques of HACSEs
in Castle and Hendry, 2014a, and Spanos and Reade, 2015), so do not
alert investigators who fail to compute mis-specification tests as to the
problems.

Finally, the recursively-estimated coefficients β̂i,t with ±2SEi,t, the
residuals with ±2σ̂t, and the recursive FChow test are shown in Fig-
ure 7.6 revealing considerable non-constancy. The coefficient of Et−1 is
converging towards unity, often signalling untreated location shifts (see
Castle et al., 2010).

Table 7.3: Solved static long-run equation for E from (7.3)

Variable 1 C O g k

Coefficient 289 1.77 2.45 −0.86 1.35
SE 635 0.17 0.64 1.05 0.97
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The dilemma confronting any investigator after fitting (7.3), and
facing so many test rejections, is how to proceed. Misspecification tests
can reject against a number of different alternatives to those for which
they were originally derived, so implementing that particular alternative
is a non-sequitur. For example, residual autocorrelation need not entail
error autocorrelation but may arise from incorrect dynamics, unmodeled
location shifts or other parameter changes, data measurement errors
and omitted variables, so adopting a recipe of the form often attributed
to Orcutt and Cochrane (1949) can be counter-productive (see e.g.,
Mizon, 1995). Indeed, once there is residual heteroskedasticity and non-
constancy, it is unclear what other rejections mean, except to confirm
that something is wrong. The obvious alternative of general-to-specific
is what we now explore for modeling UK CO2 emissions.

7.5 Four Stages of Single-Equation Model Selection

In this subsection, we consider the four stages of conditional model se-
lection from (7.2) extended by using super saturation (namely IIS+SIS),
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fitting to data over 1861–2011 to allow an end-of-sample parameter-
constancy test to 2017.

First, in §7.6 we select both impulse and step indicators at a tight
nominal significance level α, which is the theoretical gauge, retaining all
of the other regressors in (7.2) without selection. The studies referenced
in Section 2 have established that the theoretical and empirical gauges
are generally close for IIS, and have derived the uncertainty around
the latter, which is almost negligible for very small α0.001 = 0.001.
Less is known analytically about the gauge of SIS or super saturation,
but the simulation studies noted earlier suggest the gauge should be
set around 1/2T . Since there are T = 151 observations, there will be
M ≈ 300 indicators in the candidate set (T impulse indicators and T −2
step indicators), so under the null hypothesis that no indicators are
needed, α0.001M = 0.001× 300 = 0.3 of an indicator will be significant
by chance. Even doubling that, α0.0012M can be interpreted that one
indicator will be retained adventitiously approximately three out of
every five times these choices are applied to new data sets with the
same configuration of T , so over-fitting seems unlikely. As shown above,
estimating (7.2) without indicator variables is unsuccessful as all mis-
specification tests strongly reject. Diagnostic tests will be applied to
check that the finally selected equation is well specified, with non-
autocorrelated, homoskedastic and nearly Normal residuals, constant
parameters, and no remaining non-linearity: (7.4) records that outcome.

Second, in §7.7 we select over the other nine regressors at α0.01
(indicators already selected are bound to be significant at this second
stage). Almost none of the nine regressors will be retained by chance if
in fact they are irrelevant.

Third, also in §7.7 we solve this selected model for the cointe-
grating, or long-run, relation implicit in it, and reparametrize the
non-deterministic variables to differences. In doing this mapping to a
non-integrated specification, step indicators are included in the coin-
tegration relation, so that they do not cumulate to trends, leaving
impulse indicators and differenced step indicators unrestricted. While
this may seem somewhat complicated, the reasons for doing so are ex-
plained in the survey articles by Hendry and Juselius (2000, 2001) and
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in Hendry and Pretis (2016). Finally, we re-estimate that non-integrated
formulation in §7.8.

7.6 Selecting Indicators in the General Model

Following this path, we find for T = 1862–2011, retaining all the
regressors and selecting impulse and step indicators jointly at 0.1%,
testing constancy over 2012–2017:

Êt = 0.52
(0.06)

Et−1 − 47
(13)

1{1921} − 163
(20)

1{1926} − 44
(10)

1{1946}

+ 56
(11)

1{1947} + 29
(9.8)

1{1996} − 42
(14)

S{1925} + 72
(13)

S{1927}

− 31
(7.5)

S{1969} + 47
(10)

S{2010} − 158
(89)

+ 1.86
(0.13)

Ct

− 0.88
(0.18)

Ct−1 + 1.71
(0.26)

Ot − 1.07
(0.28)

Ot−1 + 0.95
(0.33)

gt

− 1.13
(0.33)

gt−1 + 7.64
(1.8)

kt − 7.02
(1.8)

kt−1 (7.4)

σ̂ = 9.58 R2 = 0.995 FAR(2, 130) = 2.93 χ2
nd(2) = 5.97

FARCH(1, 149) = 3.42 FHet(20, 123) = 0.82
FReset(2, 130) = 2.30 FChow(6, 132) = 1.40 Fnl(27, 105) = 1.04

where Fnl tests for non-linearity (see §2.2.2). All of these mis-specification
tests are insignificant, including FReset and Fnl so all of the non-linearity
has been captured by (7.4), but the tests are applied to I(1) data, so
correct critical values are not known: see Berenguer-Rico and Gonzalo
(2014) for a test of non-linear cointegration applied in this context.

Five impulse and four step indicators have been selected despite the
very tight significance level. Combining the indicators in (7.4) allows
some simplification by transforming 1{1926} and S{1927} to ∆1{1926}, and
1{1947}−1{1946} = ∆1{1947}. This reduces the number of genuine location
shifts to three, an intermediate modeling stage that was implemented
before selecting over the nine regressors. The resulting σ̂ was unaffected
by these transformations.
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The remaining step shifts capture major events with long-term im-
pacts that are not otherwise captured by the variables in the model.
These could reflect changes in the improving efficiency of fuel use, or
the effects of omitting other sources of emissions with key technological
changes, or usage shifts not taken into account in calculating emissions.
Since steps in the Autometrics implementation of SIS terminate at the
dates shown, their reported signs reflect what happened earlier, so a
positive coefficient for S{1925} entails a higher level prior to 1926. That
is the date of the 1926 Act of Parliament that created the UK’s first
nationwide standardized electricity distribution grid, greatly enhanc-
ing the efficiency of electricity, but also witnessed the General Strike
probably captured by ∆1{1926}. Then 1969 saw the start of the major
conversion of UK gas equipment from coal gas (about 50% hydrogen)
to natural gas (mainly methane) with a considerable expansion in its
use. The coefficients of both these location shifts have the appropriate
signs of reducing and increasing emissions respectively. Although the
UK’s Clean Air Act of 1956 did not need a step indicator, probably
because it was captured by the resulting fall in coal use, we inter-
pret the step shift S{2010} showing a higher level of emission of 47Mt
before then as the reaction to the Climate Change Act of 2008 (see
https://www.legislation.gov.uk/ukpga/2008/27/contents) and the Eu-
ropean Union’s Renewables Directive of 2009, discussed in §7.11. Thus,
we doubt the explanation is the Great Recession of 2008–2012, since
the previous largest GDP fall in 1921–22 did not need a step, but just
had an impulse indicator for the large outlier in 1921. As coal volumes
are included, indicators for miners’ strikes should only be needed to
capture changes in inventories, which might explain part of the large
impulse indicator for 1926.

7.7 Selecting Regressors and Implementing Cointegration

Secondly, all nine regressors are retained when selecting at 1% signifi-
cance.

Third, we solve for the long-run cointegrating relationship, justified
by the Doornik and Hendry (2018) unit-root t-test value of tur = −8.99∗∗
which strongly rejects the null hypothesis of no cointegration (see

https://www.legislation.gov.uk/ukpga/2008/27/contents
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Ericsson and MacKinnon, 2002, for the appropriate critical values,
which are programmed into PcGive). The resulting cointegration relation
defines the equilibrium-correction trajectory Q̃t = Et − ẼLR,t (adjusted
to a mean of zero in-sample). Step indicators need to be led by one
period as Q̃t−1 will be entered in the transformed model.

However, being at the end of the initial sample up to 2011 from the
definition of step indicators here, 1− S{2010} only has two observations
in sample. Consequently, it was decided to extend the estimation sample
by two observations to 2013 since the current full sample now ended in
2017, to enable the cointegrating relation to include S{2010}. This led
to closely similar estimates to (7.4) with tur = −9.34∗∗ and the solved
long-run:

ẼLR = 2.0
(0.06)

C + 1.4
(0.18)

O + 1.18
(0.27)

k − 0.27
(0.28)

g + 63
(6)

S{1924}

− 64.0
(14)

S{1968} + 70
(13)

S{2009} − 328.
(165)

(7.5)

All variables are significant at 1% other than g, which is ‘wrong signed’.
The coefficient of coal is close to the current standard estimate of ≈ 2.1–
2.3, as is that of oil to its estimate, though somewhat lower than the
1.6 in Table 7.1.

Figure 7.7(a) shows how closely the long-run derived relation ẼLR,t
in (7.5) tracks Et. Panel (b) records the resulting time series for Q̃t
centered on a mean of zero. While Q̃t is not stationary from a changing
variance—unsurprising given the omission of the impulse indicators,
matching the visible spikes—a unit root is rejected.

Because the units in which the different variables in (7.5) are mea-
sured are not directly comparable, their relative importance as determi-
nants of the level of Et is hard to judge. However, Figure 7.2(b) provided
a 3-dimensional plot of Et against Kt and Ct to show that while the rise
then fall of coal usage in Figure 7.2(a) explains much of the behavior
of CO2 emissions, the increases in the capital stock track the shift in
the mid 20th century to higher emissions for the same volumes of coal
as in the 19th (a similar picture emerges when plotting Et against Ct
and Ot, but with a more erratic spread). Moreover, in the relatively
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Figure 7.7: (a) Et and ẼLR,t; (b) Q̃t = Et − ẼLR,t centered on a mean of zero.

similar long-run solution in a log-linear formulation, where coefficients
are elasticities, the two dominant influences were 0.42 from coal and
0.40 from capital stock, with much smaller effects from GDP and oil.
These effects match prior anticipations as discussed above. Indeed, in
the linear and log-linear models, the long-run effect of GDP is negative,
possibly reflecting the move from manufacturing to a service-based
economy, although it is insignificant in the semi-log form (7.5).

7.8 Estimating the Cointegrated Formulation

Fourth, transforming to a model in differences and the lagged coin-
tegration relation from (7.5) then re-estimating revealed a couple of
additional outliers (significant at 1% but not the original 0.1%), and
adding those indicators yielded (7.6) for 1861–2013, testing constancy
over 2014–2017.
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∆̂Et = 1.88
(0.10)

∆Ct + 1.71
(0.21)

∆Ot + 7.15
(1.09)

∆kt + 0.89
(0.28)

∆gt

− 0.50
(0.05)

Q̃t−1 − 15.2
(2.4)

− 79.4
(8.8)

∆1{1926} + 50.2
(6.4)

∆1{1947}

− 45.8
(11.1)

1{1921} − 27.5
(8.9)

1{1912} + 26.8
(8.9)

1{1978} + 28.4
(8.9)

1{1996}

(7.6)
σ̂ =8.87 R2 = 0.94 FAR(2, 139) = 0.49 χ2

nd(2) = 1.67
FHet(14, 134) = 1.03 FARCH(1, 151) = 0.53

FReset(2, 139) = 1.50 Fnl(15, 126) = 1.35 FChow(4, 141) = 1.75.

Increases in oil, coal, k and g all lead to increases in emissions, which
then equilibrate back to the long-run relation in (7.5). There are very
large perturbations from this relationship, involving step shifts, impulses
and blips. Archival research revealed that 1912 saw the first national
strike by coal miners in Britain causing considerable disruption to train
and shipping schedules, although nothing obvious was noted for 1978.

The turbulent periods create such large changes it is difficult to
ascertain how well the model describes the data from Figure 7.8, so
Figure 7.9 records the implied levels’ fitted values and outcomes. The
match is extremely close, although the sudden lurches are only ‘modeled’
by indicator variables, as are several of the step shifts. Possible explana-
tions for the need for impulse indicators, some discussed above, include
the role of gas, changes in stocks of coal and oil leading to divergences
from measured output (so having different effects on emissions), the
changing efficiency of production and usage (e.g., replacing electric fires
by central heating), and general changes such as better insulation. All
of the diagnostic statistics remain insignificant.

7.9 Encompassing of Linear-Semilog versus Linear-Linear

Encompassing tests were applied in §3.2 to discriminate between
the roles of trend and previous distances driven. In this subsection,
we apply them to test the linear-semilog model in (7.6) denoted M1
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Figure 7.8: (a) Actual and fitted values for ∆Et from (7.6); (b) residuals scaled
by σ̂; (c) residual density and histogram with a Normal density for comparison;
(d) residual autocorrelation.

against the earlier linear-linear model reported in https://voxeu.org/
article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels
denoted M2. As in the application of encompassing in Table 3.1, the
instruments are the combined regressors of the two models. Table 7.4
records the outcome.

The instruments used were S{2010}, ∆gt, ∆kt, Constant, ∆1{1947},
Q̃t−1, ∆Ct, ∆Ot, 1{1912}, 1{1921}, 1{1978}, 1{1996}, ∆Kt, 1{1970}, ∆S{1983},
∆1{1926}, and Q̃GK,t−1, where Q̃t−1 and Q̃GK,t−1 denote the equilibrium
correction terms of the versions with log and linear GDP and Capital
respectively. Although M1 is rejected against M2, the F(4, 134) parsimo-
nious encompassing test against the joint model is equivalent to adding
the four variables from the linear model, and is not significant at the
1% level used for selection, nor are any of those variables individually

https://voxeu.org/article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels
https://voxeu.org/article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels
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Figure 7.9: Actual and fitted values for UK CO2 emissions with indicator dates.

Table 7.4: Encompassing test statistics where M1 is (7.6) with σM1 = 8.89, M2 is
the linear model with σM2 = 9.18 and σJoint = 8.69

Test Form M1 vs. M2 Form M2 vs. M1

Cox (1962) N[0, 1] −3.74∗∗ N[0, 1] −5.40∗∗
Ericsson (1983) IV N[0, 1] 3.26∗∗ N[0, 1] 4.53∗∗
Sargan (1964) χ2(4) 10.0∗ χ2(4) 17.9∗∗
Joint model F(4, 134) 2.62∗ F(4, 134) 5.00∗∗

significant at 1%. Conversely, Q̃t−1, ∆gt, ∆kt, and 1{1921} are highly
significant at less than 0.1% if added to M2.

7.10 Conditional 1-Step ‘Forecasts’ and System Forecasts

To check the constancy of the model after 2013, Figure 7.10(a) records
the four 1-step ahead ‘forecasts’ ∆̂ET+h |T+h−1 for ∆ET+h from (7.6),
from T = 2013 with h = 1, . . . , 4, conditional on the realized values for
the regressors, where σ̂f denotes the forecast standard error. We also



282 Econometric Modeling of UK Annual CO2 Emissions

2003 2006 2009 2012 2015 2018

-50

-25

0

25

MtMt

Mt
(a)

^^

2003 2006 2009 2012 2015 2018

350

400

450

500

550

Mt
(b)

∆ +h |T+h−1∆E
t∆

~ET+h |T+h−

2003 2006 2009 2012 2015 2018

-50

-25

0

25

50

75
Mt

(c)

∆ET+h|T+h−1±2σf

∆ET+h|T+h−1

∆Et

∆ET+h|T+h−1±2σf

∆ET+h|T+h−1

∆Et

^

ET+h|T+h−1±2σf

ET+h|T+h−1

Et

^^

~

~

~

^

Figure 7.10: (a) Outcomes ∆Et, fitted values, and 1-step conditional ‘forecasts’
∆̂ET+h |T+h−1 with ±2σ̂f shown as bars, and robust ‘forecasts’ ∆̃ET+h |T+h−1;
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commencing in 2008.

report ‘forecasts’ from the robust device (2.27), denoted ∆̃ET+h |T+h−1
(see Hendry, 2006, and §2.9). The derived ‘forecasts’ ÊT+h |T+h−1 for
the levels ET+h are also shown in Panel (b). The robust devices have
slightly larger RMSFEs of 14.9, as against ∆̂ET+h |T+h−1 of 13.7, so the
conditional ‘forecasts’ suggest no substantive shift in the relationship,
despite describing the lowest levels of CO2 emissions seen since the
19th century. However, Panel (c) shows the important role of the step-
indicator for 2010 as the forecasts resulting when it is absent are
systematically too high.

Re-estimating the CO2 model up to 2017 showed almost no change
in σ̂ to 8.99, consistent with constancy. However, dropping S2010 then
re-estimating to 2017 leads to a jump in σ̂ to 11.1 and rejection on



7.11. Policy Implications 283

almost all the diagnostic tests, as does commencing forecasts from 2008,
at which point the effects of the Climate Change Act would not be
known. Now the advantages of the robust device come into their own as
panel (c) shows. The misspecified model’s ‘forecasts’ suffer systematic
failure when S{2010} is not included (all other indicators were included),
lying outside the ±2σ̂f error bars for the last four observations, with
a RMSFE of 36, whereas despite that omission, the robust ‘forecasts’
track the downward trend in emissions with RMSFE = 25.

To obtain unconditional forecasts and evaluate the role of IIS and
SIS in model development and forecasting, a vector autoregression
(VAR) with two lags was estimated for the five variables, Et, Ct, Ot,
gt, and kt, over 1862–2011 with and without the indicators found for
(7.4). In the former, those indicators were included in all equations. The
VARs were estimated unrestrictedly without any selection to eliminate
insignificant variables as that would lead to different specifications
between the systems: Clements and Hendry (1995) demonstrate the
validity of forecasting in this setting. Figure 7.11 Panel (a) reports the
outcomes for 1-step ahead forecasts with and without the step indicators
and Panel (b) the multi-step forecasts going 1, 2, . . . , 6 steps ahead. In
both cases, indicator-based forecast intervals are shown as fans, and
without step indicators by bars. In-sample, impulse indicators only
have an impact on forecasts to the extent that they change estimated
parameters, whereas step indicators can have lasting effects. As can be
seen, including the step indicators greatly reduces ±2σ̂f for the 1-step
forecasts in Panel (a) and leads to much smaller RMSFEs in both cases
as compared to when no step indicators are included. The outcomes do
not always lie within the uncertainty intervals for forecasts without SIS,
which under-estimate the uncertainty despite a larger σ̂.

7.11 Policy Implications

The most important implication of the above evidence is that substantial
CO2 reductions have been feasible, so far with little apparent impact
on GDP. The UK’s 2008 Climate Change Act (CCA) established the
world’s first legally-binding climate-change target to reduce the UK’s
greenhouse-gas (GHG) emissions by at least 80% by 2050 from the 1990
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baseline (the UK carbon budget counts six GHG emissions, not just
CO2). A range of policy initiatives was implemented, with an updated
carbon plan in 2011 (again covering more than just CO2 emissions),
with carbon budgets to limit GHG emissions to 3018 Mt CO2-equivalent
over the five years 2008–2012 and 2782 Mt over 2013–2017. While only
counting the CO2 component, which is approximately 80% of the total,
emissions over 2008–2012 cumulated to 2477 Mt, and to date over 2013–
2017, to 2039 Mt, both below the sub-targets, allowing 20% for other
GHG emissions while still hitting those overall targets.

To test the UK’s achievement of its 2008 CCA targets for CO2,
the above 5-year total targets were translated into annual magnitudes,
starting 20 Mt above and ending 20 Mt below the average target for
the period. However, our test does not depend greatly on the within-
period allocation, which affects any apparent residual autocorrelation
(not significant, but the sample is small). We then scaled these annual
targets by 0.8 as the share of CO2 in total greenhouse gases emitted by
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the UK, shown in Figure 7.12(a). As a decade has elapsed since the Act,
there were 10 annual observations on CO2 emissions to compare to the
targets, and we calculated a test of the difference between targets and
outcomes being zero, but starting in 2009 as the Act could not have
greatly influenced the emissions in its year of implementation. A graph
of those differences is shown in Figure 7.12(b).

The null of ‘emissions = targets’ is strongly rejected on the negative
side with a mean of −18 and a zero-innovation error t-test value of −2.67
(p < 0.03: t = −1.99 correcting estimated standard errors for residual
autocorrelation and heteroskedasticity), or as in panel (b), a downward
step of −46.8 starting in 2013 with a t of −5.9. A similar approach could
be used to evaluate the extent to which countries met their Paris Accord
Nationally Determined Contributions (NDCs), given the relevant data.
Thus, the UK has reduced its emissions faster than the targets and in
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Figure 7.12: (a) UK CO2 emissions and Climate Change Act 2008 CO2 targets;
(b) deviations from targeted values with a step indicator; (c) scenario reductions
required in coal and oil use for original 2050 target; (d) resulting reductions in CO2
emissions from (7.6). In (c) and (d), the horizon is compressed to 5-year intervals
after 2017.
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2017 was already below the implicit target for 2018. Indeed, the budget
for 2018–2022 of 2544 Mt, roughly 410 Mt p.a. of CO2, is undemanding
given the 2017 level of 368 Mt, but should not induce complacency,
as the easiest reductions have been accomplished with coal use now
almost negligible. The NDCs agreed at COP21 in Paris are insufficient
to keep temperatures below 2 ◦C so must be enhanced, and common
time frames must be adopted to avoid a lack of transparency in existing
NDCs: see Rowan (2019). Since the baseline dates from which NDCs
are calculated is crucial, 5-year NDC reviews and evaluation intervals
are needed.

7.12 Can the UK Reach Its CO2 Emissions Targets for 2050?

For CO2 emissions to meet their share by 2050 of the 80% drop from
the 1990 baseline of 590 Mt, as required by the 2008 CCA, they would
need to fall to about 120 Mt p.a. To illustrate, we simulate a scenario
with no coal usage, quite a possibility now that coal is banned for
electricity generation from 2025, and a 70% fall in oil use, to around 20
Mt p.a., from greatly increased use of non-gasoline vehicles sustained
by expanded renewables and alternative engines. The outcome is shown
in Figure 7.12 panel (c). The horizon is compressed after 2017, as
the timing of such dramatic reductions is highly uncertain. Implicitly,
reduced dependence on natural gas to under 35 Mtoe p.a. (a 75%
reduction) is required, potentially replaced by hydrogen as the UK used
to burn (but then from coal gas) before the switch starting in 1969
discussed above. With about a quarter of CO2 emissions coming from
agriculture, construction and waste (currently about 100 Mt p.a.) a
serious effort to much more than halve those must also be entailed.
Panel (d) records the resulting trajectory for CO2 emissions, falling
from around the 2015 level of 400 Mt p.a. to about 120 Mt p.a., or
around 1.8 tonnes per capita p.a., down from 12.4 tonnes per capita p.a.
in 1970. The point and interval ‘forecasts’ are at constant K and G,
and assume the parameters of (7.6) remain constant despite the major
shift: increases in K and G would make the targets harder to achieve
unless they were carbon neutral. However, given the key role of the
capital stock in explaining the UK’s CO2 emissions since 1860, as K
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embodies the vintage of the technology at the time of its construction
and is long lived, transition to zero carbon has to be gradual, and
necessitates that new capital, and indeed new infrastructure in general,
must be zero carbon producing. As a ‘policy’ projection, together these
measures would reach the UK’s 2008 announced 2050 target–but only
if such reductions, perhaps with offsetting increases, could actually be
achieved.

The rapidly falling costs of renewable-energy sources like solar cells
and wind turbines (see e.g., Farmer and Lafond, 2016) combined with
improved storage methods should substantially reduce oil and gas use in
electricity production. Table 7.5 records recent estimates of electricity
generating costs in £/MWh by different technologies.

Onshore wind turbines have fallen in cost and increased in efficiency
so rapidly over the past two decades that for the UK at least they

Table 7.5: Electricity generating technology costs in £/MWh (megawatt hour)

Power generating technology
costs £/MWh Low Central High

Nuclear PWR (Pressurized 82 93 121
Water Reactor) (a)

Solar Large-scale PV (Photovoltaic) 71 80 94
Wind Onshore 47 62 76
Wind Offshore 90 102 115
Biomass 85 87 88
Natural Gas Combined Cycle Gas Turbine 65 66 68
CCGT with CCS 102 110 123
Open-Cycle Gas Turbine 157 162 170
Advanced Supercritical Coal 124 134 153
Oxy-comb. CCS

Coal IGCC with CCS (b) 137 148 171

Note: (a) New nuclear power guaranteed strike price of £92.50/MWh for Hinkley Point C in
2023; (b) IGCC =Integrated Gasification Combined Cycle. Lowest cost alternatives shown
in bold.
Source: Electricity Generation Costs, Department for Business, Energy and Industrial Strat-
egy (BEIS), November 2016.



288 Econometric Modeling of UK Annual CO2 Emissions

offer the lowest cost alternative. Offshore wind turbines have also fallen
greatly in cost and increased in efficiency, so now also offer a low cost
method of electricity generation (with the incidental benefit of creating
marine reserves and saltwater fish sanctuaries), even below natural gas
combined-cycle turbines before the costs of carbon capture and storage
(CCS) are included.5 Solar photovoltaics come next (and this is the
UK!) if CCS is enforced, though both require large backup electricity
storage systems for (e.g.,) windless nights. Renewables’ share of overall
electricity generation reached a peak of 60.5% at one stage in April
2020, according to National Grid data. Increased outputs of renewable
electricity will reduce the volume of emissions for a given level of energy
production by also reducing usage of oil in transport through electric
car use, but should not influence the constancy of the empirical models
above conditional on the volumes of coal and oil included.

A probable reason for the sharp fall in coal use in 2017 is a rise in
its price relative to those of other energy sources, with the UK carbon
tax doubling in 2015 to £18 per tonne of CO2. Conversely, natural gas
use has increased 3.5 fold since the mid-1980s, so although producing
less than half the CO2 emissions of coal per Btu, still contributes about
140 Mt p.a. to CO2 emissions. The use of oil in transport will take
longer to reduce, but more efficient engines (with diesel being phased
out completely given its toxic pollutants), and most vehicles powered
from renewable sources, combined with much higher taxes on gasoline,
offer a route to the next stage of CO2 emissions reductions.

In 2019, the UK Government amended the original CCA target to
zero net emissions by 2050. Then all the sources of CO2 emissions must
go to a level such that carbon capture and sequestration (CCS), possibly
combined with atmospheric CO2 extraction methods, would remove the
rest. Facing an almost certain irreducible non-zero minimum demand
for oil and gas (e.g., for chemicals), to achieve the Paris COP21 target
of zero net emissions before 2050 requires really major technological
change, almost certainly involving development of current research

5https://institutions.newscientist.com/article/2217235-the-cost-of-subsidising-
uk-wind-farms-has-dropped-to-an-all-time-low/ show a more recent cost of £40 MWh,
now highly competitive.

https://institutions.newscientist.com/article/2217235-the-cost-of-subsidising-uk-wind-farms-has-dropped-to-an-all-time-low/
https://institutions.newscientist.com/article/2217235-the-cost-of-subsidising-uk-wind-farms-has-dropped-to-an-all-time-low/
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avenues into removing or using existing CO2: see https://phys.org/news/
2014-09-carbon.html. Net zero is an excellent target, but incredibly
difficult to achieve, and as yet there is no sensible strategy to do
so . . . although we now discuss some highly speculative routes.

To meet the net zero target, overall natural gas use would need to be
reduced to near zero, like coal. Natural gas is mainly used for electricity
production and household indoor and water heating. The former could
be handled in part by increased renewable sources, but as potentially
serious storage problems remain (more on this shortly), research effort
should be devoted to developing safe small modular nuclear reactors
(SMRs) based on well developed nuclear-powered engines in submarines.6
These SMRs might be able to use thorium or the ‘spent’ uranium fuel
rods from older reactors, helping reduce the serious problem of existing
nuclear-waste disposal. Household use could be reduced by increased
taxes on natural gas and oil usage, encouraging the adoption of solar
panels and (e.g.,) air heat pumps, as well as switching the national
gas system back to its pre-1969 hydrogen basis.7 Over the next 20–30
years with ever improved technologies, and consequential cost reductions
in generating electricity by renewables, a zero target does not seem
impossible for electricity and gas without requiring reductions in GDP
growth, perhaps even increasing it with new opportunities.

Next, road transport decarbonisation is progressing slowly using
lithium-ion battery powered electric vehicles, with relatively short jour-
ney capacity yet take a non-negligible time to recharge, discouraging
the replacement of internal combustion engines. Huge advances have oc-
curred in recent years both in understanding the properties of graphene,
and in its cost of production (see ‘graphene in a flash’ from plastic waste
in https://phys.org/news/2020-01-lab-trash-valuable-graphene.html).
Graphene nanotubes (GNTs) can act as electrode supercapacitors (see
e.g.: https://www.nature.com/articles/s41598-020-58162-9). Thus, one
could imagine an electric vehicle that sandwiched an array of GNTs
between two Faraday cages over the roof and above the inside of a

6www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Small-
Nuclear-Power-Reactors/.

7Such taxes are to change behavior, not to raise revenue, so should be redistributed
to families facing fuel poverty.

https://phys.org/news/2014-09-carbon.html
https://phys.org/news/2014-09-carbon.html
https://phys.org/news/2020-01-lab-trash-valuable-graphene.html
https://www.nature.com/articles/s41598-020-58162-9
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Small-Nuclear-Power-Reactors/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Small-Nuclear-Power-Reactors/
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vehicle, or by a prefabricated modular unit fitted to the existing roof
(perhaps even retrofitted on existing car roofs) to power an electric
motor, so the vehicle becomes the battery. GNTs seem capable of rapid
charging, and should be able to sustain viable distances on a single
charge.

Moreover, if successful, once most vehicles are like that, then man-
dating them to be plugged in when not in use, a vast electric storage
system would be available for no additional investment, so renewable
sources of electricity could be widely adopted without worrying about
security of supply. There are undoubtedly many key technical issues
needing research as to how such a system would work in practice, some
ongoing such as developing 2-dimensional tri-layers of graphene as an
insulator, superconductor and magnet.8

The potential benefits of such a power source could be huge as a
‘sensitive intervention point’ (SIP: see https://science.sciencemag.org/
content/364/6436/132). By not demonising road transport for its CO2
footprint and dangerous pollution, cars with internal combustion engines
could be replaced at a rate matching the increased need for storage
from the extension of renewables. The basics of electric engines are
established, so employment can be maintained in vehicle manufacture
and all its ancillary industries as well as in new graphene-based ones.
Two side benefits are a major reduction in both mining for lithium,
and later disposal of, or recycling, the resulting toxic battery waste;
and eliminating the need for expensive catalytic converters, cutting
production costs markedly, eliminating a target for theft (which then
exacerbates air pollution), and reducing palladium mining.

Indirect consequences could solve the UK’s rail systems problem
of a lack of electrification across much of the network by replacing
diesel-electric trains by GNT-supplied electric ones, although some
progress is occurring with hydrogen driven trains in Germany and
the UK (see https://www.birmingham.ac.uk/research/spotlights/
hydrogen-powered-train.aspx); and even more speculatively, as GNTs
are so light, possibly short-haul electric aircraft. As an historical aside,

8See https://www.graphene-info.com/graphene-triples-superconducting-
insulating-and-ferromagnetic.

https://science.sciencemag.org/content/364/6436/132
https://science.sciencemag.org/content/364/6436/132
https://www.birmingham.ac.uk/research/spotlights/hydrogen-powered-train.aspx
https://www.birmingham.ac.uk/research/spotlights/hydrogen-powered-train.aspx
https://www.graphene-info.com/graphene-triples-superconducting-insulating-and-ferromagnetic
https://www.graphene-info.com/graphene-triples-superconducting-insulating-and-ferromagnetic
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we noted above that electric cars date back before the 1880s, so an
all-electric transport system is just going back to where society might
have been 140 years ago.

However, agriculture, construction, chemical industry and waste
management look more problematic, although there is progress
in efficiency improvements. Inner-city vertical and underground
farms economize on water, fertilizer and energy (especially from
transport reductions) and are increasingly viable given the falls
in costs for LED lighting (see e.g., www.scientificamerican.com/
article.cfm?id=the-rise-of-vertical-farms). There is considerable
research on altering farm mammal diets to reduce methane emissions,
including adding dietary fumaric acid (from plants like lichen and
Iceland moss), where lambs showed a reduction by up to 70%
(e.g., https://phys.org/news/2008-03-scientists-cow-flatulence.html).
Changes to human diets are also en route, and need encouraging:
on a small scale, see http://www.climateeconometrics.org/2020/03/
18/nuffield-colleges-decreasing-food-emissions/. Prefabrication of
highly insulated dwellings must be a priority, as well as using less
GHG-intensive building materials. Recycling more, using more waste
for fuel, and landfilling less to reduce methane are all essential.

The UK’s total ‘consumption induced’ CO2 equivalent emissions are
higher than the domestic level through CO2 embodied in net imports,9
although the large reductions achieved to date have a major domestic
component, and of course ‘consumption induced’ CO2 will fall as the
CO2 intensity of imports falls with reductions in exporting countries.
However, targeting consumption rather than production emissions has
the unwanted consequence of removing any incentives for emitting
industries or exporting countries to improve their performance, as these
would not be counted against them (e.g., if NDCs used a consumption
basis). Border carbon taxes have a role to play in improving both
exporters and importers performance. Similarly, allocating emissions
from transport and packaging to (say) the food sector would again
alleviate those intermediate sectors of the responsibility to invest to

9See http://www.emissions.leeds.ac.uk/chart1.html and https://www.
biogeosciences.net/9/3247/2012/bg-9-3247-2012.html.

www.scientificamerican.com/article.cfm?id=the-rise-of-vertical-farms
www.scientificamerican.com/article.cfm?id=the-rise-of-vertical-farms
https://phys.org/news/2008-03-scientists-cow-flatulence.html
http://www.climateeconometrics.org/2020/03/18/nuffield-colleges-decreasing-food-emissions/
http://www.climateeconometrics.org/2020/03/18/nuffield-colleges-decreasing-food-emissions/
http://www.emissions.leeds.ac.uk/chart1.html
https://www.biogeosciences.net/9/3247/2012/bg-9-3247-2012.html
https://www.biogeosciences.net/9/3247/2012/bg-9-3247-2012.html
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reduce what are in fact their emissions by attributing them to retail
outlets or consumers. Conversely, the purchasing clout of large retail
chains can pressure suppliers to improve, as (e.g.,) Walmart is doing.10

The aggregate data provide little evidence of high costs to the
reductions achieved in CO2 emissions, which have dropped by 186 Mt
from 554 Mt to 368 Mt (34%) so far this century, during which period
real GDP has risen by 35%, despite the ‘Great Recession’ but before
the pandemic. Historically, those in an industry that was being replaced
(usually by machines) lost out and bore what should be the social
costs of change, from cottage spinners, weavers and artisans in the
late 18th–early 19th centuries (inducing ‘Luddites’), to recent times
(from a million coal miners in 1900 to almost none today). There is
a huge difference in the impacts of substitutes and complements for
existing methods: motor vehicles were a huge advance, and created many
new jobs directly and indirectly, mainly replacing horses but indirectly
destroying their associated workforce. Although not a direct implication
of the aggregate model here, greater attention needs to be focused on the
local costs of lost jobs as new technologies are implemented: mitigating
inequality impacts of climate induced changes ought to matter centrally
in policy decisions.

Given the important role of the capital stock in the model above,
‘stranded assets’ in carbon producing industries are potentially problem-
atic as future legislation imposes ever lower CO2 emissions targets to
achieve zero net emissions (see Pfeiffer et al., 2016). As argued by Farmer
et al. (2019) exploiting sensitive intervention points in the post-carbon
transition could be highly effective, and they cite the UK’s Climate
Change Act of 2008 as a timely example that had a large effect.

An excellent ‘role model’ that offers hope for reductions in other en-
ergy uses is the dramatic increases in lumen-hours per capita consumed
since 1300 of approximately 100,000 fold yet at one twenty-thousandth
the price per lumen-hour (see Fouquet and Pearson, 2006).

10See https://corporate.walmart.com/newsroom/2016/11/04/walmart-offers-
new-vision-for-the-companys-role-in-society.

https://corporate.walmart.com/newsroom/2016/11/04/walmart-offers-new-vision-for-the-companys-role-in-society
https://corporate.walmart.com/newsroom/2016/11/04/walmart-offers-new-vision-for-the-companys-role-in-society
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7.13 Climate-Environmental Kuznets Curve

The ‘environmental Kuznets curve’ is assumed to be a ∩ shaped rela-
tionship between pollution and economic development: see Dasgupta
et al. (2002) and Stern (2004). For a ‘climate-environmental Kuznets
curve’, we estimated a regression of the log of CO2 emissions, denoted
et (lower case denotes logs) on the log of real GDP, gt and its square
g2
t , which delivered:

êt = − 31.5
(1.6)

+ 6.13
(0.27)

gt − 0.247
(0.012)

g2
t (7.7)

σ̂ = 0.091 R2 = 0.91 FAR(2, 145) = 37.3∗∗ FARCH(1, 148) = 0.26
FHet(3, 146) = 1.70 χ2

nd(2) = 68.3∗∗ FReset(2, 145) = 10.61∗∗

FChow(5, 147) = 3.06∗ Fnl(6, 141) = 8.72∗∗.

Many of the diagnostic tests are significant, and both Freset and Fnl
reveal that all of the non-linearity has not been captured by (7.7).
Indeed, (7.7) has a borderline rejection on the parameter-constancy
test, but the rejections on the other mis-specification tests makes that
difficult to interpret. Full-sample impulse-indicator saturation (IIS)
selected 17 indicators at a significance level of 0.1%, but still led to
Fnl(6, 128) = 11.5∗∗, and σ̂ = 0.055.

The relationship between log CO2 emissions and log real GDP is
plotted in Figure 7.13. The large drop in CO2 emissions while GDP more
than doubled is notable, and reflects improved technology in energy use
as well as a changing mix of fuels. Although the non-linearity is marked,
there are large and systematic deviations from the fitted curve, shown
inside ellipses for the start and end of the sample, 1921 and 1926, and
the 1930s and 1940s.

Since the final model in (7.6) is linear in CO2 emissions, and log-
linear in GDP, a natural question is whether it can account for the non-
linearity of the ‘climate Kuznets curve’ in Figure 7.13. This is answered
in Figure 7.14 where the log of the fitted values from (7.6) is cross plotted
against log(GDP) together with log(CO2) data, to reveal the same
non-linearity even though log(GDP) enters the equilibrium-correction
mechanism in (7.5) negatively and is insignificant. The regression of
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Figure 7.13: Scatter plot of log of CO2 emissions against the log of GDP (shown
by dates) with the fitted values from Equation (7.7) (shown by the line).

log(CO2) on the log of the fitted values from (7.6) had σ̂ = 0.019. Of
course that better explanation is greatly enhanced by using coal and
oil, but conversely is after translation into logs.

Thus, the ‘curvature’ of an eventually declining relationship between
log CO2 emissions and log real GDP is an artefact of both being corre-
lated with technology. Had electricity been discovered in 1300, batteries
several decades later, rather than waiting for Volta in 1800, and solar
cell technologies a few decades after that and so on, all of which de-
pended on knowledge and understanding rather than income levels per
se, an electrical world economy may have circumvented the need for coal.
Conversely, if neither electricity nor the internal combustion engine had
been discovered, leaving only coal as a fuel source, efficiency improve-
ments or lower usage would have been the only routes to reductions in
CO2 emissions. Relative costs of energy provision matter, and Table 7.5
showed recent power generating costs, but the metaphor suggests a
‘climate Kuznets curve’ is mainly a technology-driven relation. Income
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Figure 7.14: Plot of UK log(CO2) emissions and log fitted values against log(GDP):
Re-creating a ‘climate Kuznets curve’.

levels may matter more for other environmental relations such as clean
air and less polluted rivers.



8
Conclusions

Climate econometrics aims to apply econometric methods to augment
our understanding of climate change and the interactions between hu-
man actions and climate responses. The field has evolved rapidly over the
last few years from a pressing need to understand the science, economics,
health and policy implications of climate change. Time-series economet-
rics is well placed to offer insights on these issues, as the methodology
has been developed to model complex, evolving and shifting interactions
over time due to human behavior. Although originally applied to eco-
nomic data, the methodology is applicable to climate-economic research
as anthropogenic forces play a key role in determining climate and vice
versa. This review aimed to explain the tools developed at Climate
Econometrics (http://www.climateeconometrics.org/) to disentangle
complex relationships between human actions and climate responses
and their associated economic effects, masked by stochastic trends and
breaks. Empirical applications to climate problems demonstrate the
benefits of applying data-based methods jointly with underlying the-
ory to improve our understanding of climate phenomena, to assist in
forecasting future outcomes and to provide policy guidance.

296
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We described novel modeling approaches to climate-economic data,
combining insights from climate theory with empirical evidence to dis-
cover new results. We embed theory models in far larger information sets,
allowing new features, dynamics, outliers, breaks and non-linearities to
be discovered, while retaining established theory. One of the fundamen-
tal aspects of the modeling approach is the use of multi-path selection
that enables more candidate variables than observations to be explored.
This opens the door to a wide range of indicator saturation estimators
to model outliers, breaks, distributional shifts and non-constancies. We
discuss the costs of selection relative to mis-specification and show the
remarkably small costs associated with searching over large numbers of
candidate variables, thus enabling wide-sense non-stationary data to be
modeled.

The monograph emphasizes the importance of taking account of
the non-stationary nature of time series, both stochastic trends and
distributional shifts. The example in Section 3 looking at distances
traveled by car and human road fatalities illustrates the hazards of
not correctly dealing with non-stationary time series. Such an example
highlights that mistaken inferences and possibly false causal attribution
can occur if the data properties are not carefully taken into account
and relationships modeled with rigorous testing.

Our short excursion into climate science in Section 4 discusses the
Earth’s atmosphere and oceans, demonstrates that humanity can easily
alter these, and shows it is doing so. The composition of the atmosphere,
the roles of CO2 and other greenhouse gases, and the consequences
of changes in atmospheric composition are discussed, focusing on the
impacts of climate change on the ‘great extinctions’ over geological time.
Section 5 notes that the consequences of the Industrial Revolution in
the UK during the 18th century have been both good and bad, greatly
raising living standards worldwide, but leading to dangerous levels of
CO2 emissions from using fossil fuels.

The econometric approach outlined in Section 2 was illustrated by
two detailed applications. Section 6 applies the modeling approach to
the last 800,000 years of Ice Ages to illustrate its practical details. The
theoretical model of Ice Ages is based on variations in the Earth’s orbit,
which determine the solar radiation reaching the planet, where and
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when it is most concentrated and hence the speed with which glacial
periods occurred and later retreated. But the question then arises that
if Ice Ages are due to orbital variations, why should CO2 levels correlate
so highly negatively with land ice volume? Ice, CO2 and temperature
are modeled as jointly endogenous functions of the orbital variables
in a 3-variable simultaneous equations system, applying saturation
estimation on the system to model outliers, along with dynamics, and
non-linearities to capture interaction effects. The approach embeds
the theory and allows for dynamics, non-linearities, non-stationarities
and endogeneity in a system, rebutting concerns that the modeling
approach is inherently single equation. The evidence suggests that CO2
was an endogenous response to orbital drivers over Ice Ages, jointly
with ice volume and temperature, albeit now mainly determined by
anthropogenic sources. Looking into the future with CO2 changing to
an exogenously determined value set by anthropogenic emissions points
to temperatures dangerously in excess of the peak values measured over
the Ice Ages.

Section 7 developed an explanation of the United Kingdom’s CO2
emissions data over 1860–2017 in terms of coal and oil usage, capital
stock and GDP, taking account of their non-stationary nature, with
many turbulent periods and major shifts over the 157 years. Having been
first into the Industrial Revolution that has transformed the world’s
wealth at the cost of climate change, the UK is one of the first out in
terms of its CO2 emissions; the UK’s total CO2 emissions have dropped
below the level first reached in 1894, and per capita UK CO2 emissions
are now below their level in 1860, when the UK was the ‘workshop of the
world’, and yet per capita real incomes are more than 7-fold higher. The
econometric approach to modeling such dramatic changes was explained
in four steps. The key explanatory variables were coal and oil usage
and capital stock, whereas GDP had an insignificant effect in levels
given the other explanatory variables, possibly reflecting a move away
from manufacturing to a service economy, notwithstanding which, the
model implies a non-linear ‘climate Kuznets curve’ between emissions
and GDP. Compared to directly fitting a ‘climate Kuznets curve’ as in
(7.7), the resulting model highlights the benefits of the more general
methodology. Improvements in multi-step forecasts also highlighted
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the advantages of taking account of in-sample outliers and shifts using
impulse- and step-indicator saturation, despite those creating more
candidate variables to select over than observations.

The UK’s climate policy has been effective, and the resulting large
emissions reductions have not yet involved major aggregate sacrifices.
The UK’s reductions (e.g., of 24 Mt in 2016) are the more impressive
against recent recorded global annual increases of 3.3 ppm (remember
that 1 ppm = 7.81 gigatonnes of CO2). However, local losses in incomes
and employment from changes in fuel production have not been ad-
dressed and ‘stranded assets’ could be a potential problem if future
legislation imposes lower CO2 emissions targets. The UK’s target of a
100% reduction from the 1990 baseline of 590 Mt of emissions is only
achievable with complete reductions in oil and gas use and in other
sources net of increased re-absorption of CO2.

We conclude by briefly describing some of the other applications
of methods developed at Climate Econometrics, including to panels
and cross-sections, to demonstrate the diverse array of problems to
which our approaches can be applied, including to health care as well
as economic modeling. Their common feature is to emphasize the role
of human behavior in climate change additional to well-established
physical processes.

To determine any anthropogenic signature in global CO2 concentra-
tions, Hendry and Pretis (2013) modeled anthropogenic and natural
contributions to atmospheric CO2 using a large number of potential
explanatory variables: their general unrestricted model had 492 variables
for 246 monthly observations. Despite approximately 10148 possible mod-
els to select over, Autometrics estimated just 571 models at α = 0.001,
and finally selected 14 variables. No deterministic terms were retained,
so all the explanation of changes in global CO2 concentrations came
from stochastic sources, demonstrating that the modeling approach
does not impose any particular stance on likely causes. Increases in
cumulated changes in vegetation reduced atmospheric levels of CO2 by
about 2 ppm with large seasonal fluctuations, whereas the Southern
Oscillation Index (SOI) increased it by about 3 ppm, both over 1981(7)–
2002(12), revealing small net effects from natural sources. However, the
cumulation of anthropogenic sources over that period produced a strong
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trend from 340 ppm to almost 380 ppm, closely matching the CO2
measured at Mauna Loa, and consistent with isotope-based measures.

Pretis et al. (2015a) applied SIS to objectively investigate a slow-
down in the rise of global mean surface temperature (called the hiatus
in warming). Their results indicated that when temperature can be
modeled by anthropogenic forcings and natural variability such as solar
insolation, the hiatus was not statistically different from the rest of the
1950–2012 temperature record. They also found no evidence that the
slowdown in temperature increases was uniquely tied to episodes of La
Niña-like cooling.

Pretis and Roser (2017a) compared socio-economic scenarios created
in 1992 and 2000 against the observational record to investigate the
possible decoupling of economic growth and fossil-fuel CO2 emissions.
They showed that global emission intensity (fossil fuel CO2 emissions
relative to GDP) rose in the first part of the 21st century, primarily
from the under-predicted rapid growth in Asia, counter to some climate
projections foreseeing a decline. Nevertheless, the wide spread of tem-
perature changes in climate projections did not predominately originate
from uncertainty across climate models, but from the broad range of
different global socio-economic scenarios and their implied energy pro-
duction. As discussed in §2.9 above, forecasting the future when human
behavior is involved is always prone to unanticipated shifts.

Kaufmann et al. (2017) demonstrated that spatial heterogeneity of
climate-change experiences mattered, since skepticism about whether
the Earth was warming was greater in areas exhibiting cooling relative
to areas that had warmed. Moreover, recent cooling could offset his-
torical warming to enhance skepticism. While climate change is due to
global warming, the former is a better epithet since not all areas warm
uniformly as a consequence of changes.

Pretis et al. (2018b) applied a panel-data version of IIS to analyze the
potential impacts on economic growth of stabilizing global temperatures
at either 1.5 ◦C or 2 ◦C above pre-industrial levels. They estimated
a non-linear response of changes in global annual per capita GDP
growth to average annual temperatures, both without and with IIS.
They found that stabilizing temperature increases at 1.5 ◦C did not
lead to too many major costs in reducing per capita GDP growth
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across countries, although some already poor countries in the tropics
would suffer. However, temperatures rising by 2 ◦C would inflict serious
losses on most already-hot countries, lowering their projected GDP
per capita growth by up to 2.5% per annum, consistent with other
empirical estimates. At a global level, 1.5 ◦C is preferable to 2 ◦C above
pre-industrial levels and is still (possibly) achievable.

Tropical cyclones, including hurricanes in the West Atlantic and ty-
phoons in the Pacific, are often highly destructive: see Emanuel (2005).
Four of the five costliest US natural disasters have been caused by
relatively recent hurricanes, so Martinez (2020) applied the model se-
lection methods and saturation estimators described above to examine
whether improvements in forecasting could reduce their damages as ear-
lier warnings would allow more time to prepare or evacuate. A measure
of forecast uncertainty was added to the main natural and human chan-
nels determining damages, the former including highest wind speeds,
minimum pressure, maximum storm surge, maximum rainfall, seasonal
cyclone energy, historical frequency of hurricanes, soil moisture content
and air temperature; and the latter including income, population, and
the number of housing units in the area at risk, together with other
candidate variables such as time of year and the location hit etc. Ap-
plying Autometrics with IIS to the 98 hurricane strikes to the Eastern
USA since 1955, minimum pressure, maximum storm surge, maximum
rainfall, income, housing units, and forecast uncertainty were selected.1

All of these studies had theory guidance in formulating their ap-
proaches, but the econometric techniques discussed above also allow for
direct linking of climate models with empirical data, as in Pretis (2019),
to further improve econometric research on human responses to climate
variability. This monograph has emphasized the need for handling all
modeling decisions jointly, allowing for key forms of wide-sense non-
stationarity, facing possibly incorrect theories and mis-measured data.
Few approaches in either climate or economic modeling as yet consider
all such effects jointly, but a failure to do so can lead to mis-specified

1His web site https://sites.google.com/view/andrewbmartinez/current-research/
damage-prediction-tool provides a tool based on his model for predicting the damages
after a hurricane strike to the Atlantic coast of the USA, which has proved accurate
for most of the hurricanes in recent years.

https://sites.google.com/view/andrewbmartinez/current-research/damage-prediction-tool
https://sites.google.com/view/andrewbmartinez/current-research/damage-prediction-tool
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models and hence incorrect theory evaluation, mis-leading forecasts
and poor policy analyses. The software to implement our approach is
available as Autometrics in OxMetrics8, in XLModeler for Excel, and
as Gets in R, so can be readily accessed.
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