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Abstract

We investigate past climate variability over the Ice Ages, where a simultaneous-equations system
is developed to characterize land ice volume, temperature and atmospheric CO2 levels as non-linear
functions of measures of the Earth’s orbital path round the Sun. Although the orbital variables were
first theorised as the fundamental causes of glacial variation by Croll in 1875 following Agassiz’s
conception of a ‘Great Ice Age’ in 1840, their minor variations were thought insufficient to drive
such major changes, especially the relative rapidity of shifts between glacial and warmer periods.
The changes over the ice ages in atmospheric CO2 closely matched changes in land ice volumes,
and since temperature changes are in turn affected by CO2 and also closely tracked ice volumes,
a key identification issue is the causal role of CO2 in the process. As any links between CO2 and
temperature above the forces from the orbital drivers (which of course are still operating) must have
been natural ones hundreds of thousands of years ago, understanding their interactions at that time is
important now that additional CO2 emissions are anthropogenic. We develop a simultaneous equation
system over the last 800,000 years that allows a test of the role of CO2 as endogenously driven by
the orbital variations, or an ‘exogenous’ influence as it now is.

JEL classifications: C01, C51, C87, Q54.
Keywords: Climate Econometrics; Model Selection; Outliers; Identification; Saturation Estimation; Au-
tometrics; Ice Ages.

1 Introduction

While many contributions led to the discovery of massive past glaciation on land, that by Louis Agassiz
(1840), based on the contemporaneous movements of glaciers in his native Switzerland and using those to
explain a number of previously puzzling features of the landscape in Scotland, was a major step forward
in understanding the variability of past climate. Agassiz conceived of a ‘Great Ice Age’, an intense, global
winter lasting ages, rather than multiple Ice Ages as now, but Archibald Geikie (1863) discovered plant
fragments between different layers of glacial deposits, implying that sustained warm periods separated
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cold glacial periods in prehistory. The calculations by James Croll (1875) using just the variations in the
Earth’s orbit then gave a theoretical mechanism for how ice ages could occur and a time line, where the
changing albedo of ice coverage helped explain the relative rapidity with which glacial periods switched,
although he predicted that the last ice age was older than observed. Croll’s research was later amplified by
Milutin Milankovitch (1969) (originally 1941) who calculated solar radiation at different latitudes from
changes in obliquity and precession of the Earth as well as eccentricity. Milankovitch also corrected
Croll’s assumption that minimum winter temperatures mattered, to show that cooler summer maxima
were more important in leading to glaciation.
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Figure 1: Ice-age orbital drivers: (a) eccentricity (Ec); (b) obliquity (Ob); (c) precession (Pr); (d)
Summer-time insolation at 65◦ south (St).

Even a century after Agassiz, there was limited evidence to support such ideas and the timings of
glacial episodes. However, these general explanations have since been corroborated by many empirical
observations of past oceanic and atmospheric climate changes: see e.g., John Imbrie et al. (1992). As
we show below, an important reason for analyzing what may seem like the distant past is its relevance
today. The climate then was little affected by the activities of the various human species on the planet,
partly as they were too sparse and partly did not have the technology. Consequently, any links between,
say, CO2 and temperature above the forces from the orbital drivers (which of course are still operating)
must have been natural ones, so can help us understand their present interactions when CO2 emissions
are anthropogenic.

There are three main interacting orbital changes over time affecting incoming solar radiation (insola-
tion) that could drive ice ages and inter-glacial periods. These are: (a) 100,000 year periodicity deriving
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from the non-circularity of the Earth’s orbit round the Sun induced by the gravitational influences of
other planets in the solar system (eccentricity: Ec below); (b) a 41,000 year periodicity coming from
changes in the tilt of the Earth’s rotational axis relative to the ecliptic (obliquity: Ob); (c) about 23,000
and 19,000 year periodicities due to the precession of the equinox, which changes the season at which the
Earth’s orbit is nearest to the Sun, resulting in part from the Earth not being an exact sphere (Pr).1 These
three are shown measured at 1000-year intervals in Figure 1(a), (b) and (c), together with summer-time
insolation at 65◦ south (St) in Panel (d) (see Didier Paillard, Laurent Labeyrie, and Pascal Yiou, 1996).
The X-axes in such graphs are labelled by the time before the present in 1000-year intervals, starting
800,000 years ago. Ec and St show two major long-swings pre and post about −325 and within each,
a number of shorter ‘cycles’ of varying amplitudes, levels and durations. Ob appears to have increased
in amplitude since the start of the sample, whereas it is difficult to discern changes in the patterns of
Pr. The orbital series are clearly strongly exogenous, and most seem non-stationary, but due to shifting
distributions, not unit roots.
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Figure 2: Ice-age orbital driver interactions: (a) EcOb; (b) EcPr; (c) ObPr; (d) EcSt; (e) PrSt; (f) ObSt.

Orbital variations are not the only forces that affect glaciation. The Earth’s energy balance is de-
termined by incoming and outgoing radiation: for a cointegrated econometric model thereof, see Pretis
(2019). The role of St is to summarize changes in the former, but an exogenous summary measure of
outgoing radiation is not clear as changes that also affect climate include:
(i) variations in the Sun’s radiation output (radiative forcing);

1The measure was divided by 1000 to avoid awkwardly small estimated coefficients.
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(ii) particulates in the atmosphere from volcanic eruptions, and
(iii) the atmosphere’s water vapor and greenhouse gas content (primarily CO2, N2O, CH4);
(iv) reflectivity (albedo) from alterations in ice cover, especially in polar regions, and from
(v) wind blown and volcanic dust covering existing ice;
(vi) ocean temperatures (which lag behind land);
(vii) sea levels and induced ocean circulation patterns;
(viii) cloud cover and its distribution in location and season;
(ix) changes in the magnetic poles.
Of these, (i), (ii) and (ix) seem strongly exogenous, as do the volcanic contributions to (iii) and (v),
whereas the rest of (iii) and (iv)–(viii) must be endogenously determined within the global climate system
by the strongly exogenous drivers, although anthropogenic greenhouse gas emissions are now ‘exoge-
nously’ changing the composition of the atmosphere: see Jean-François Richard (1980) for an analysis
of modeling changes in a variable’s status as endogenous or exogenous, although here that effect would
at most affect the last few (1000 year) observations.

That the distance from the Sun matters seems rather natural, as such variations change radiative
forcing and hence global temperatures. However, the variations due purely to the eccentricity of the orbit
are small. Obliquity also must matter: if the Northern Hemisphere directly faced the Sun, ice would
usually be absent there; and if it never faced the Sun, would generally be frozen. Precession seems the
smallest driving force of these, but interactions may be important: when the Earth is furthest from the
Sun and tilts away in the Northern Hemisphere summer, that may cool faster: see Paillard (2010) for
an excellent discussion of these interactions. Even so, a problem with the theory that ‘purely orbital’
variations drove ice ages over the last 800,000 years is that the known orbital variations should not result
in sufficiently large changes in radiative forcing on the Earth to cause the rapid arrival and especially
the rapid ending, of glacial periods: see Paillard (2001). Although St could provide some additional
explanation, and in particular seems to help capture changes at peaks and troughs, we decided to only
use the strongly exogenous orbital drivers. An equation regressing St just on these and its first lag
produced R2 = 0.988, so we leave to the reader the exercise of building a model with St included in the
list of variables.2

A probable reason for ‘rapid’ changes in the system is the presence of non-linear feedbacks or inter-
actions between the drivers. Thus, Figure 2 shows their interactions in Panels (a) [Ec×Ob], (b) [Ec×Pr],
(c) [Ob×Pr], (d) [Ec×St], (e) [Pr×St] and (f) [Ob×St] although the model developed here includes only
the first three interactions together with the squares to capture non-linear influences. Recently, Kristina
Pistone, Ian Eisenman, and Veerabhadran Ramanathan (2019) have shown that the complete disappear-
ance of Arctic sea ice would be (in temperature terms) ‘equivalent to the effect of one trillion tons of
CO2 emissions’ (roughly 140 ppm) because an open ocean surface typically absorbs approximately six
times more solar radiation than a high albedo surface covered with sea ice. Such an effect reducing
ocean ice as the climate gradually warmed after the peak of glacial extent would accelerate melting, and
conversely for cooling. Based on ice-age evidence, Anton Vaks, Andrew Mason and Sebastian Breiten-
bach et al. (2019) show that a sea-ice-free Arctic makes permafrost vulnerable to thawing, which would
further accelerate warming, although they find that thawing permafrost last occurred about 400,000 years
ago, about mid-way through our sample. However, the non-linear model in Francis Diebold and Glenn

2For more comprehensive systems that endogenously model measures for all the variables in (iii)–(vii), see Kaufmann and
Katarina Juselius (2013), and Pretis and Kaufmann (2018). We are also grateful to those authors for providing the data series
analyzed here.
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Rudebusch (2019) suggests there is a 60 percent chance of an ice-free Arctic Ocean in the 2030s, which
would exacerbate current warming.

Explaining glaciation over the ice ages has garnered a huge literature, only a small fraction of which
is cited here. As the following quote illustrates, the possibility of the Northern Hemisphere facing another
ice age was still considered in the 1950s, but by 1982, Hubert Lamb emphasized global warming as the
more serious threat to climate stability.

We do not yet know whether the latest turn in our climatic fortunes, since the optimum
years of the 1930s, marks the beginning of a serious downward trend or whether it is merely
another wobble...
Lamb (1959)

2 Data series over the past 800,000 years

A vast international effort over many decades has been devoted to measuring the behavior of a number of
variables over the ice ages. Naturally, proxies or indirect but closely associated observables that remain
in the ground, ice, oceans and ocean floors are used based on well-established physical and chemical
knowledge. Econometricians are essentially mere end users of this impressive research base.
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Figure 3: Ice-age time series: (a) Ice volume (Ice); (b) atmospheric CO2 in parts per million (CO2); (c)
temperature (Temp); (d) shorter-sample sea level changes in meters.
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Antarctic-based land surface temperature proxies (denoted Temp below) were taken from Jean Jouzel,
Valérie Masson-Delmotte, O. Cattani, and Gabrielle Dreyfus et al. (2007). The paleo record from deep
ice cores show that atmospheric CO2 varied between 170ppm and 300ppm over the ice ages, where
1ppm = 7.8 gigatonnes of CO2 (see Lüthil et al., 2008). Ice volume estimates (denoted Ice below) were
from Lisiecki and Raymo (2005) (based on δ18O as a proxy measure). To capture orbital variations, Ec,
Ob and Pr and their interactions are conditioned on. All observations had been adjusted to the common
EDC3 time scale and linearly interpolated for missing observations to bring all observations on a 1000
year time interval (EDC3 denotes the European Project for Ice Coring in Antarctica–EPICA–Dome C,
where drilling in East Antarctica has been completed to a depth of 3260 meters, just a few meters above
bedrock (see Frédéric Parrenin et al., 2007). Synchronization between the EPICA Dome C and Vostok
ice core measures over the period−145, 000 to the present was based on matching residues from volcanic
eruptions (see Parrenin et al., 2012). The total sample size in 1000 year intervals is T = 801 with the last
100 observations (i.e., 100,00 years, ending 1000 years before the present) used to evaluate the predictive
ability of the estimated system. Figure 3 records the time series together with a shorter sample of sea
level data.3
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Figure 4: (a) CO2 and the negative of ice volume (IceNeg); (b) CO2 and temperature; (c) temperature
and IceNeg; (d) IceNeg and sea level (only for the last 465,000 years).

3Sea surface temperature data are available from Alfredo Martı́nez-Garcia, Antoni Rosell-Melé, Walter Geibert, Rainer Ger-
sonde, Pere Masqué, Vania Gaspari, and Carlo Barbante (2009) which could help explain oceanic CO2 uptake and interactions
with land surface temperature. Sea level data, based on sediments, can be obtained from M. Siddall et al. (2003), over a shorter
sample, but are not analyzed here.
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We focus on modeling Ice, CO2 and Temp as jointly endogenous functions of the orbital variables
which we take to be strongly exogenous, so feedbacks onto their values from Earth’s climate are neg-
ligible. The patterns of these three time series are remarkably similar, all rising (or falling) at roughly
the same times. Figure 4 emphazises how close these movements are by plotting pairs of time series:
(a) CO2 and the negative of ice volume (denoted IceNeg); (b) CO2 and Temp; (c) Temp and IceNeg; (d)
IceNeg and sea level (only for the last 465,000 years). The pattern in the atmospheric CO2 levels is
closely similar to that of the negative ice volume, the temperature record and sea level, as are other pairs.

If ice ages are due to orbital variations, why should atmospheric CO2 levels also correlate so closely
with ice volume? David Lea (2004) relates changes in tropical sea surface temperature to atmospheric
CO2 levels over the last 360,000 years to suggest that CO2 was the main determinant of tropical cli-
mate. Conversely, in https://climateaudit.org/2005/12/18/gcms-and-ice-ages/, Stephen McIntyre argues
that CO2 should not be treated as a forcing variable in statistical models of ice-age climate, as it is an
endogenous response. So is the mechanism not orbital variations, but instead that changes in atmospheric
CO2 levels alter global temperatures which in turn drive changes in ice volume? The answer lies in the
deep oceans, in particular, the Southern Ocean, which acts as a carbon sink during cold periods, and
releases some of that CO2 as the planet warms, in turn enhancing cooling and warming: see e.g., Samuel
Jaccard, Eric Galbraith, Alfredo Martı́nez-Garcı́a, and Robert Anderson (2016). Thus, the exogenous
orbital variations drive temperature, which drives changes in ice volume and in turn CO2 levels. By
modeling the 3-variable simultaneous-equations system estimated using full information maximum like-
lihood (FIML: see e.g., Hendry, 1976), treating all three as endogenous, the roles of Temp and CO2 as
endogenous determinants of Ice can be investigated. The next section describes the formulation of simul-
taneous equations models, Section 3.1 discusses identification, then Section 3.2 considers the problem
of ‘weak instruments’.

3 Selecting simultaneous equations models

A simultaneous equations representation is a model of a system of n variables, yt, that are to be modeled
as jointly endogenous by m other variables, zt, that are non-modeled. The properties of such systems
were first analyzed in Haavelmo (1943). Their representations derive from the theory of reduction as
representing the local data generation process (LDGP: see Hendry, 2009, 2018). To validly condition
on zt requires that those variables are known to be at least weakly exogenous (see Koopmans, 1950b,
and Engle, Hendry, and Richard, 1983). In essence, the weak exogeneity of zt requires that the DGP of
zt does not depend on the parameters of the DGP of yt conditional on zt. When the status of zt is not
certain, as with CO2 in Section 4.2, zt should be treated, at least initially, as a component of yt. The
strong exogeneity of zt, as later applies to the orbital drivers, requires that their DGP does not depend on
lagged values of yt, in which case non-linear functions of the zt can also be included as ‘conventional’
conditioning determinants of yt even when they are non-stationary.

A dynamic representation of the system (yt, zt) can be formulated as a vector autoregression (VAR)
conditional on the zt (often denoted by VARX), lags of all the variables, and deterministic terms such as
intercepts and any indicator variables, denoted dt:

yt = Ψ0zt +
s∑

j=1

Ψjzt−j +
s∑

i=1

Γiyt−i + Υdt + ut (1)
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where ut ∼ INn [0,Ωu]. The assumptions on the error process require that s is sufficiently large to create
a martingale difference process, and the variables including dt remove any outliers, location shifts and
parameter changes not captured by the other regressors so that homoskedasticity and constant parameters
are viable. Then given that zt is weakly exogenous, the error process will also be uncorrelated with the
regressors.

To check the specification of (1), the system should be tested for congruence: once the initial system
is congruent, all later reductions of it should be congruent as well to avoid relevant information being lost.
Next, a parsimonious version of the system in (1) can then be selected, while ensuring that congruence
is maintained (denoted PVARX): Hendry and Mizon (1993) propose evaluating such dynamic models
by their ability to encompass the VAR. Since the initial system is identified, all later non-simultaneous
reductions from eliminating insignificant variables must be as well. At this selection stage, the system
should also have been reduced to a non-integrated (I(0)) representation so that conventional critical values
can be used: if the data are I(1), cointegration and differencing can do so.

A system like (1), which is also called the ‘reduced form’ in the econometrics literature, is always
identified, so that multivariate least-squares estimators of its parameters are unique, and under these
assumptions will deliver consistent estimates. A simultaneous equations representation is a model of the
system derived by reduction from (1): see Hendry, Adrian Neale and Frank Srba (1988). However, in
econometrics there is often a pre-specified theory of that representation from which the ‘reduced form’
is derived (hence the terminology), inverting the correct order of the relationship between the system and
a model thereof.

Written in a concise notation, with the N × 1 vector wt denoting all the right-hand side variables,
the system in (1) is:

yt = Πwt + ut where ut ∼ INn [0,Ωn] (2)

Then a simultaneous-equations model of (2) is a reduction to:

Byt = Cwt + εt where εt ∼ INn [0,Σε] (3)

with:
BΠ = C (4)

A necessary condition for (4) to be solvable is that there are no more non-zero parameters in B and C
than the n×N in Π, which is called the order condition. In addition, when the rank condition discussed
in §3.1 is satisfied, B and C have a unique relation to Π and (3) is fully identified. We use ‘structure’ (in
quotation marks) to denote an equation with more than one endogenous variable as in (3), without any
claim that it is a structural equation in the sense of being invariant to extensions of the information set
for new variables, over time, and across regimes. A simultaneous-equations model like (3) then needs to
be estimated appropriately, because including the ith endogenous variable in the equation for the jth will
induce a correlation with its equation error. An infinite number of possible estimation methods exists,
characterized by the estimator generating equation in Hendry (1976). Here we use full information max-
imum likelihood (FIML) first proposed in Koopmans (1950a). The general formulation and estimation
procedures underlying FIML are described in Hendry, Neale, and Srba (1988). Since a simultaneous-
equations model is a reduction from the system, automatic model selection is applicable as discussed in
Hendry and Krolzig (2005): Doornik and Hendry (2017) propose an algorithm for doing so based on the
multi-path search procedure of Autometrics, a variant of which is applied in Section 4.2.
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3.1 Identification in the DGP

Identification, in the sense of uniqueness of B,C, in systems like (3) given Π has been extensively ex-
plored in the econometrics literature: see e.g. Koopmans (1949), Koopmans and Olaf Reiersøl (1950),
Frank Fisher (1966) and Thomas Rothenberg (1973) inter alia. The rank condition for identification
determines the extent to which each equation is or is not identified. In that literature, identification is
usually a synonym for uniqueness, although usage also entails connotations of ‘interpretable in the light
of subject matter theory’ and ‘corresponding to reality’ (as in ‘identify a demand curve’, as opposed to a
supply relation, or a mix). Whether or not B,C in (3) can be recovered uniquely from Π in (2) requires
the exclusion of some different variables in every equation and the inclusion of some others, otherwise
linear combinations of equations cannot be distinguished.4 Given the appropriate exclusions and inclu-
sions corresponding to particular elements of B and C being zero, the rank condition is then satisfied so
(3) is fully identified. Consequently, B and C are unique related to Π, which entails restrictions on the
Π matrix in (2). The system for the three ice-age variables in Section 4.2 is highly overidentified, so all
the yi,t, i 6= j can be included in the other equations for yj,t, j 6= i.

To avoid later ‘spurious identification’ of a simultaneous representation, all the right-hand side vari-
ables need to be significant at a reasonable level both in the system and in their associated equations.
Otherwise, claiming identification by excluding insignificant regressors from any equation based on their
apparent presence in other equations, when in fact they are also insignificant there, will be misleading
when such variables are actually irrelevant to the system as a whole. Throughout selection of a simulta-
neous representation, the rank condition for identification can be imposed as a constraint, both to ensure
that essentially the ‘same equation’, but with different normalizations, is not included twice, and that at
every stage, the current form is identified (see Hendry, Neale, and Srba, 1988).

There are three possibilities of lack of identification, exact identification, and over identification
(subsets of parameters could be identified or not when others are the converse, in which case the following
comments apply to the appropriate set). When B, C are not identified, then (2) is the least restricted
but still fully identified, representation. Any just-identified simultaneous representation with a form
like (3) will also be minimally identified, so there is an equivalence class of such specifications with
equal likelihood (see e.g., Rothenberg, 1971), although in such a setting, reductions may be possible by
eliminating irrelevant regressor variables from the entire system.

When B,C are over identified by the rank condition, then (3) is a unique representation for the
given restrictions. However, Hendry, Maozu Lu, and Mizon (2009) show there may exist different sets
of restrictions embodied in matrices B∗, C∗ which are not linear transforms of B, C (precluded by
their identifiability), but under which (3) is equally over identified. Thus, again an equivalence class of
such specifications with equal likelihood can result: a given degree of over identification by itself does
not ensure a unique model even when there is a unique DGP. The validity of any set of over-identified
restrictions can be checked through parsimonious encompassing of the system by the ‘structure’. When
L is the log-likelihood of the system (2), and L0 that of the ‘structural’ form (3), in stationary DGPs, the
test is 2(L − L0) ∼ χ2

OR(p) for p over-identifying restrictions (see Koopmans, 1950a, and Hendry and
Mizon, 1993).5

4Other forms of restriction than exclusions could identify ‘structural’ parameters that do not directly satisfy the rank condi-
tion, such as a diagonal error covariance matrix, or cross-equation links, but these are not considered here.

5Hence the earlier advice to obtain an I(0) representation of the system.
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3.2 Weak instruments

Weak instruments show up as a poorly determined initial system, or requiring a loose significance level
for regressors in (1) to be retained. That states, but does not resolve, the problem which lies in avail-
able information, not the performance of any selection algorithm or modeling approach. The choice of
instruments can be made as proposed by Hendry and Krolzig (2001) (also see Hall, Rudebusch, and
Wilcox, 1996) both to determine their relevance for each endogenous variable, and to test for instrument
mis-specification as part of the congruence check.

A ‘structure’ could be identified in principle, yet the available instruments may be so weak that for
practical purposes, the uncertainty is close to unbounded. A large literature exists on this problem: see
e.g., Douglas Staiger and James Stock (1997), Eric Zivot, Richard Startz, and Charles Nelson (1998),
Jiahui Wang and Zivot (1998), Peter Phillips (1989), Stock and Jonathan Wright (2000), and Sophocles
Mavroeidis (2003). Again, the issue is intrinsic to the available information, and is not a problem created
by model selection procedures.

4 System equation modeling of the Ice Age variables

In addition to the many dozens of climatology-based studies, there are several econometric analyses
of ice-age data, examining issues of cointegration and the adequacy of using orbital variables as the
exogenous explanatory regressors. Kaufmann and Juselius (2010, 2013) analyze the late Quaternary
‘Vostok’ period of four ‘glacial cycles’ and Pretis and Kaufmann (2018) build and simulate a statistical
climate model over the paleo-climate record of the 800,000 years of data investigated here.

Our focus is on modeling Ice allowing for the endogeneity of Temp and CO2, with dynamic feed-
backs, non-linear impacts of the orbital variables and handling outliers. Consequently, the initial GUM
is a VARX(1) for Ice, CO2 and Temp conditional on the nine orbital measures and non-linear func-
tions thereof discussed above, with a one-period lag (i.e., 1000 years earlier) on all variables. System
impulse-indicator saturation (IIS: see Hendry Søren Johansen and Carlos Santos, 2008, and Johansen and
Bent Nielsen, 2008) was implemented selecting indicators at 0.1%, with all the continuous variables re-
tained. After locating outliers, the regressor variables were then selected at 1% to create a parsimonious
VARX(1). Next, that system was transformed to a simultaneous-equations model of the PVARX(1),
where only variables and outliers that were relevant in each equation were included, and finally contem-
poraneous links were investigated. Only retaining variables that are significant in a PVARX(1) avoids
‘spurious identification’ from using completely irrelevant variables that are then excluded differently in
each equation to apparently achieve the order condition (see e.g., Hendry, Neale, and Srba, 1988, and the
many references therein).

4.1 The general unrestricted model (GUM)

The GUM in this setting is a dynamic system with strongly exogenous regressors which can be written
as:

yt = γ0 + Γ1yt−1 + Ψ2zt + Ψ3zt−1 + Υdt + εt (5)

where:

yt = (Ice CO2 Temp)t and z′t =
(
Ec Ob Pr EcOb EcPr PrOb Ec2 Ob2 Pr2

)
t

(6)
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and dt includes the vector of impulse indicators selected by system IIS. The difference from single-
equation IIS described in Hendry, Johansen, and Santos (2008) is that indicators have to be significant
at the target nominal significance level in the system, not just in any one equation therein. The lagged
values are to capture dynamic inertia: when the ice covers a vast area, that will influence the ice sheet in
the next period, even when periods are 1000 years apart. Moreover, that observation length is just 1% of
the eccentricity periodicity, so the Earth will still be close to its previous position.6

First, all the yt−1, zt and zt−1 in (5) are retained without selection when IIS is applied at α = 0.001
for T = 697 keeping the last hundred observations for out-of-sample forecast evaluation. This led to
35 impulse indicators being selected, the earliest of which was 1{−339}. However, many of these were
retained to avoid a failure of encompassing the first feasible GUM, and were not significant at α = 0.001.

Table 1 records the correlations between the actual observations and the fitted values taking impulse
indicators into account, so each variable can be explained in large measure by a model of the form
(5). Table 2 shows the correlations between the residuals of the three equations, with residual standard
deviations on the diagonal. There remains a high correlation between CO2 and Temp residuals even
conditional on all the orbital variables, but not between those of Ice and either CO2 or Temp, although
those correlations remain negative.

Ice CO2 Temp
0.981 0.981 0.972

Table 1: Correlations between actual and fitted values in the VARX(1).

Ice CO2 Temp
Ice 0.090 — —

CO2 −0.179 5.13 —
Temp −0.180 0.574 0.711

Table 2: Correlations between VARX(1) residuals, with standard deviations on the diagonal.

Next, the other regressors were selected at 1% resulting in a PVARX(1). Again, note that selection
decisions are at the level of the system rather than individual equations. Finally, to avoid the spurious
identification issue from indicators that were insignificant in the system, any that were also insignificant
in every equation were manually deleted from the system, still leaving 32.

4.2 The simultaneous system estimates

Because many of the exogenous and lagged variables and impulse indicators were only significant in one
equation, we reformulated the system as a simultaneous-equation model. This treats all three modeled
variables as endogenous and was estimated by FIML. We then manually eliminated insignificant regres-
sors in each equation in turn. The current dated values of Temp and CO2 in the Ice equation and of Temp
in the CO2 equation were insignificant, but that of CO2 was significant in the equation for Temp. This

6Residual autocorrelation suggests that a second lag may also matter, despite such variables being 2,000 years earlier.
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delivered the system model in (7)–(9): the Appendix reports the retained impulse indicators.

Îcet = 1.43
(0.34)

+ 0.860
(0.015)

Icet−1 − 0.020
(0.002)

Tempt−1 + 102
(31)

Ect − 101
(32)

Ect−1

− 0.040
(0.014)

Obt−1 − 5.07
(1.30)

EcObt + 5.05
(1.36)

EcObt−1 − 4.97
(1.03)

EcPrt
(7)

ĈO2,t = 218
(32)

+ 0.853
(0.018)

CO2,t−1 + 1.34
(0.18)

Tempt−1 + 1400
(342)

Ect − 3070
(647)

Ect−1

− 13.0
(2.31)

Obt−1 + 70.7
(23)

EcObt−1 + 0.232
(0.047)

Ob2t
(8)

T̂ empt = − 2.49
(0.69)

+ 0.879
(0.023)

Tempt−1 + 0.0080
(0.0026)

CO2,t − 301
(37)

Ect + 22.6
(2.45)

EcObt

− 9.80
(1.94)

EcObt−1 + 25.5
(7.1)

EcPrt
(9)

The correlations between the actual and fitted values for the three variables in the SEM are virtually
identical to those in Table 1, consistent with the likelihood-ratio test of the over-identifying restrictions
against the PVARX(1) being χ2

OR(64) = 69.7, which is insignificant at even the 5% level. Although the
inertial dynamics play a key role in the three equations, all the eigenvalues of the system dynamics are
less than unity in absolute value at (0.97, 0.86, 0.77). The test for excluding all the non-linear functions
yields χ2(8) = 155∗∗, and that for dropping all the impulse indicators χ2(44) = 439∗∗, both of which
reject at any viable significance level.

Figure 5 records the actual and fitted values and residuals scaled by their standard deviations for the
three equations. The tracking is very close, including over the final 100 ‘out-of-sample’ observations,
although the residuals show the occasional outlier: remember that IIS selection was at 0.1% to avoid
overfitting. Figure 6 reports residual densities with a Normal matched by mean and variance, and cor-
relograms. The densities are relatively close to the Normal for Ice and Temp after IIS, but less so for
CO2, probably because the restriction to one lag has left some residual autocorrelation. Most of the
formal mis-specification tests rejected, possibly also reflecting the many omitted influences noted above,
although most of those seem to be endogenous responses as the climate changed, such as dust from wind
storms and sea level changes both varying with temperature. In the present context, outliers as repre-
sented by impulse indicators could derive from measurement errors in the variables, super-volcanoes
either dramatically lowering temperature by erupted particulates, or raising by emitting large volumes
of CO2, or like wind-blown dust changing the albedo of ice sheets. Most of those indicators retained
for Ice were negative around −0.2 (see appendix §6), whereas for CO2 they were primarily positive and
around +15, and for Temp around 2 but mixed in sign. However, outliers are relative to the model being
estimated, so those found here by IIS could also represent features of variables omitted from the system
in (7)–(9).

Table 3 records the correlations between the residuals of the simultaneous equations model, with the
residual standard deviations on the diagonal: these are close to those in Table 2.
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Figure 5: Actual, fitted and forecast values, with scaled residuals and forecast errors: (a) & (b) for Ice
from (7); (c) & (d) for CO2 from (8); (e) & (f) for Temp from (9). The vertical bar at T = −100 marks
the start of the forecast period.

Ice CO2 Temp
Ice 0.086 — —

CO2 −0.173 4.88 —
Temp −0.184 0.509 0.667

Table 3: Correlations of the simultaneous model residuals, with standard deviations on the diagonal.

Considering the equations in more detail, the volume of ice in (7) depends on its previous level and
on previous temperatures, as well as on eccentricity, on past obliquity and also on the current and lagged
interactions of eccentricity with obliquity, and with current precession. Although Ec and EcOb appear
to enter primarily as changes, more than their levels, the solved long-run outcome in Table 4 confirms
they both enter significantly as levels. CO2 has a similar coefficient on its lag, a feedback from the
previous temperature, current and past levels of eccentricity, on past obliquity and their interaction, and
on squared obliquity. Third, Temp responds to its previous value and positively to current CO2: the
coefficient in (9) entails that the 100 ppm increase seen since 1958 would raise temperatures by 0.80◦C
ceteris paribus. However, neither current CO2 nor current Temp are significant if added to the equation
for Ice; and current Temp is insignificant if added to the equation for CO2.
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Figure 6: Residual densities and correlograms: (a) & (b) for Ice from (7); (c) & (d) for CO2 from (8); (e)
& (f) for Temp from (9).

5 Implications

We first modeled the dynamic three equation system of Ice, CO2 and Temp, as a function of the strongly
exogenous non-linear combinations of the orbital drivers, eccentricity Ec, obliquity Ob, and precession
Pr over 700,000 years up to 100,000 years before the present. We robustified those estimates by re-
moving large outliers by system-based impulse-indicator saturation (IIS), then simplified the VARX(1)
to a PVARX(1) by first eliminating variables that were insignificant in the system, then in each of the
equations in turn. The resulting system has many implications as discussed in this section. First, §5.1
derives the long-run implications and considers the computed time series based only on the strongly ex-
ogenous variables. Then §5.2 evaluates the 1-step and long-run (dynamic) forecasts over the last 100,000
years. From those findings, §5.3 asks when did humanity first influence the climate system? Finally, §5.4
examines the evidence on the role of CO2 during past ice ages.

5.1 Long-run implications

The long-run solutions in Table 4 solve out the dynamics and lags to express each endogenous variable
just as a function of the relevant strongly exogenous orbital variables. The original coefficients are not
easy to interpret as they depend on the units of measurement of the orbital variables, so CO2 has been
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Figure 7: Computed time series of Ice, CO2 and Temp from the long-run relationships in Table 4.

divided by 100 and Temp by 10 to align numerical coefficient values. Figure 7 graphs the computed time
series of Ice, CO2 and Temp from the long-run relationships in Table 4. These graphs include the last
100,000 years which are outside the estimation sample.

1 Ec Ob EcOb EcPr ObSq
Ice −17.3 1162 1.80 −49.3 −111 −0.037
SE (16.3) (402) (1.2) (17) (31) (0.020)

CO2 32.0 −837 −2.19 35.6 47.2 0.039

SE (11.9) (276) (0.87) (11.7) (19.1) (0.016)

Temp 19.0 −798 −1.44 34.0 52.0 0.026

SE (10.8) (257) (0.80) (10.9) (19.5) (0.014)

Table 4: Long-run solutions as a function of the relevant strongly exogenous orbital variables where CO2

has been divided by 100 and Temp by 10 to align numerical coefficient values.

Despite the somewhat different coefficients in the three long-run equations, the outcome time series
are relatively similar, and the correlations between them all exceed |0.977|. These graphs are of course
just recombinations of the orbital drivers weighted by the coefficients in Table 4, so reflect the relatively
volatile and quiescent periods seen in Figure 1. Nevertheless, the increase in volatility starting around
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250, 000 years ago is marked, so the series are not stationary. The inertial dynamics as modeled by the
lagged dependent variables and the other lagged regressors smooths that over time.

5.2 1-step and long-run forecasts

Figure 8 records the hundred 1-step ahead forecasts with forecast intervals for ±2SE shown by error
bands based on coefficient estimation variances as well as the residual variances. The resulting forecast
errors (unscaled) are shown in the second column.
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Figure 8: A hundred 1-step ahead forecasts at 1000-year measures with forecast intervals at±2SE shown
by error bands: (a) for Ice from (7); (c) for CO2 from (8); (e) for Temp from (9). (b), (d) and (f) report
the associated forecast errors.

Table 5 reports their RMSFEs which are close to the in-sample standard deviations shown in the
following row as σ̂s (IIS) from Table 3 for comparison, or no IIS. The model for Ice provides a better
description of the last 100 observations than the earlier sample, even though the in-sample residual
standard deviations were calculated after outliers were removed by IIS. The forecast intervals in Figure
8 could be adjusted for the likely presence of outliers in the future at roughly their rate of occurrence in
the past by calculating the in-sample residual standard deviations excluding impulse indicators, as those
after IIS understate the future uncertainty to some extent. The last row in Table 5 reports those ‘no-IIS’
σ̃ values.

The removal of outliers has not greatly improved the in-sample fit, and omitting impulse indicators
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Ice CO2 Temp
RMSFE 0.084 5.35 0.958
σ̂s (IIS) 0.086 4.88 0.667
σ̃s (no IIS) 0.091 5.38 0.748

Table 5: 1-step ahead root mean square forecast errors; in-sample model residual standard deviations
after IIS; and model residual standard deviations without IIS.
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Figure 9: A hundred dynamic forecasts with ±2.2SE error bands: (a) for Ice from (7); (b) for CO2 from
(8); (c) for Temp from (9).

would only increase the reported forecast intervals by about 10%. The table reveals that surprisingly, Ice
provides a better description forecasting over the last 100 periods than in-sample with IIS, even though
IIS could not be applied to such a ‘future’ period, whereas CO2 and Temp forecasts are worse. Also, the
RMSFE for Ice is smaller than the in-sample fitted σ̃ without IIS, that for CO2 is similar, whereas again
Temp forecasts are worse. Looking back at Figure 5, the forecast errors for Ice seem less variable than
the in-sample residuals on ‘ocular’ econometrics, less so those for CO2, whereas those for Temp look
somewhat more volatile.

Figure 9 shows the hundred dynamic, or multi-period ahead, forecasts with ±2.2SE error bands to
reflect the absence of indicators. These error bands depend crucially on two key assumptions, namely
that the coefficients in the model remain constant, and that no new forces intervene. With the Industrial
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Revolution, an additional driver of CO2 from human fossil fuel emissions, and hence of temperature,
was created, so any extension to forecast that era by an unchanged model, as considered below, is likely
to reveal failure. Indeed, all three sets of forecasts either cross or are close to an error band at the end
of the series. The first 60 periods are tracked quite well, but miss the changes around 20,000 years ago
of ice declining rapidly, and CO2 and temperature troughing then rising quickly. Compared to earlier
changes seen in Figure 5, the last glacial period does not look unusual, a perception enhanced by Figure
10 showing the similar profiles of Ice and CO2 over the last two cyclical periods, although the last glacial
cycle persisted for longer.
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Figure 10: (a) Ice over −200 to −125; (b) CO2 over −200 to −125; (c) Ice over −120 to −1; (d) CO2

over −120 to −1.

5.3 When did humanity first influence the climate system?

Finally, it has been suggested that humanity began to influence the climate around the time of domes-
ticating animals and starting farming (see e.g., William Ruddiman, 2005), so we ‘zoom in’ on the last
10,000 years, and re-estimate the system over the longer period to −10. The estimates are not much
changed with χ2

OR(64) = 67.0, although the contemporaneous coefficient of CO2 on Temp has increased
slightly to unity. Figure 11 records the multi-step forecasts over −10 to −1 for Ice, CO2 and Temp. All
the forecasts lie within their ±2SE error bands, but nevertheless they, and the fitted values for most of
the previous 10,000 years, are systematically over for Ice and under for CO2 and Temp. This matches
the longer period dynamic forecasts in Figure 9, and could reflect model mis-specification, or the slowly
growing divergence that might derive from the increasing influence of humanity envisaged by Ruddiman
(2005). In fact, using the presence of proto-weeds that needed ground disturbance to grow in new ar-
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eas, Ainit Snir et al. (2015) provide evidence of the origins of cultivation long before Neolithic farming
occurred, dating such events to around 23,000 years ago.
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Figure 11: Multi-step forecasts over −10 to −1 of: (a) Ice; (b) CO2; (c) Temp.

5.4 The role of CO2

Having estimated the system up to 10,000 years ago, we changed the status of CO2 to unmodeled and re-
estimated the two-equation model for Ice and Temp conditional on CO2. Neither fit was much improved,
with σ̂ice = 0.085 and σ̂temp = 0.688, but now contemporaneous CO2 is highly significant in the
equation for Ice, with t = −3.37∗∗, and its coefficient in the equation for Temp has more than doubled to
0.024, which seems implausibly large with t = 10.4∗∗. Also, χ2

OR(43) = 198∗∗ strongly rejects. Thus,
the evidence here favours CO2 over the Ice Ages being an endogenous response to the orbital drivers
jointly with Ice and Temp.
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6 Simultaneous Equations Model of the Ice Ages variables with IIS

Îcet = 1.43
(0.34)

+ 0.86
(0.015)

Icet−1 − 0.020
(0.002)

Tempt−1 + 102
(31)

Ect − 101
(32)

Ect−1 − 0.040
(0.014)

Obt−1

− 5.07
(1.30)

EcObt + 5.05
(1.36)

EcObt−1 − 4.97
(1.03)

EcPrt − 0.19
(0.08)

1{−335} − 0.21
(0.09)

1{−276}

− 0.24
(0.08

1{−268} − 0.17
(0.09)

1{−243} − 0.33
(0.089)

1{−229} − 0.22
(0.09)

1{−203} + 0.24
(0.09)

1{−191}

− 0.27
(0.09)

1{−131} + 0.41
(0.09)

1{−129} − 0.20
(0.09)

1{−127} (10)

ĈO2,t = 218
(32)

+ 0.85
(0.018)

CO2,t−1 + 1.34
(0.18)

Tempt−1 + 1400
(342)

Ect − 3070
(647)

Ect−1

− 13
(2.3)

Obt−1 + 71
(23)

EcObt−1 + 0.23
(0.047)

ObSqt + 24
(4.2)

1{−339} + 18
(4.9)

1{−335}

+ 15
(4.2)

1{−307} + 17
(4.2)

1{−251} + 16
(4.8)

1{−244} + 17
(4.9)

1{−243} − 19
(4.9)

1{−241}

− 16
(4.9)

1{−225} + 12
(4.9)

1{−202} + 11
(4.2)

1{−199} + 11
(4.8)

1{−188} + 16
(4.8)

1{−178}

+ 17
(4.9)

1{−131} − 13
(4.3)

1{−127} (11)
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T̂ empt = − 2.5
(0.69)

+ 0.88
(0.023)

Tempt−1 + 0.0080
(0.003)

CO2,t − 301
(37)

Ect + 23
(2.5)

EcObt

− 9.8
(1.9)

EcObt−1 + 26
(7.1)

EcPrt + 2.12
(0.67)

1{−335} − 2.26
(0.57)

1{−295} − 1.88
(0.57)

1{−247}

+ 2.24
(0.66)

1{−244} + 1.89
(0.67)

1{−243} − 1.85
(0.66)

1{−241} − 1.65
(0.66)

1{−225}

− 1.18
(0.58)

1{−191} + 1.28
(0.58)

1{−189} − 2.00
(0.66)

1{−188} − 2.02
(0.58)

1{−187}

+ 1.37
(0.66)

1{−178} − 2.28
(0.57)

1{−176} + 1.85
(0.57)

1{−172} − 2.81
(0.58)

1{−171} + 2.10
(0.57)

1{−163}

− 2.03
(0.57)

1{−158} + 2.53
(0.67)

1{−131} − 2.13
(0.58)

1{−126} − 2.60
(0.57)

1{−109} (12)
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